
 Visual Basic I (COP 1820) Lecture Notes of Wayne Pollock

Hillsborough Community College Page 1 3/11/2010

Using Multiple Forms, Scope and Lifetime, Assembly Properties

A VB.net Windows (GUI) project can be composed of many windows (or forms). This

can be much more “polished” (professional looking) than using MessageBox.Show.

The initial form window is called the startup form. To add additional forms, just use the

menu Project-->Add Windows Form..., and select one of the template forms. (A

template form is a pre-build window with controls already added.) The plain form

(“Windows Form”) is the default template selected.

One thing to do right away is to rename your form from “Form2.vb” to something useful.

Note the name is really the name of the source code file created to support the form,

“SummaryForm.vb” for example.

Most Windows applications have a Help menu item called “About nameOfApplication”

that displays all sort of information about the application: official name, version number,

patching version, plug-in information, copyright, URL of company, and sometimes other

information (author(s), description of application, links for on-line support, updates, or

add-ons, ...) You should add such a form for all professional projects.

A notable exception is newer Windows applications that use a Ribbon interface

that don’t have a menu bar at all. Instead, click on the clover-leaf button and

choose “nameOfApplication Options”. Then click on the “Resources” button an

you will see the “About” button.

Using the Solution Explorer Window

Once you have more than one form you will find yourself using the solution explorer

window more often. This shows all the files included in the current project. Using this

window you can add files to and remove files from the project, view code or the Designer

view, and view the properties of a form or the whole project. (You can also do these

tasks using the Project menu.)

Setting Assembly Properties

Recall that in VB.net, one or more projects can be part of a single assembly. (Most of the

time there will only be one project in an assembly.) “Assembly” is the .net name for an

executable file (application or DLL). Windows access controls are based on assemblies,

which can be digitally signed. One of the things the CLR needs to know is the version

number of components (other assemblies) used by the assembly; if not found your

assembly won’t run. See Understanding And Using Assemblies and Namespaces in

.NET.

Assemblies can use different versions of the core .NET component libraries (which are

assemblies too) such as mscorlib, Microsoft.VisualBasic, and System. Every component

used by an assembly has a version number to identify it. This is why you can run several

versions of .net on the same host; each application knows the versions of components that

http://msdn.microsoft.com/en-us/library/ms973231.aspx
http://msdn.microsoft.com/en-us/library/ms973231.aspx

 Visual Basic I (COP 1820) Lecture Notes of Wayne Pollock

Hillsborough Community College Page 2 3/11/2010

it needs. Assemblies can be verified by passing an encryption key to prevent

unauthorized changes.

You can set some properties for the assembly. (And some of these properties can be

viewed by right-clicking on a .exe or .dll file and selecting properties.) Some of the

information you can set includes the application’s name, description, and version number.

There are in fact many properties that you can set, but the GUI dialog in VS only shows a

few; you would need to use advanced techniques to set other properties (adding special

code, or editing certain files).

Setting an application’s properties is preferred to hard-coding that information in the

code, say of an About box. Once set for the assembly, you can use those properties

anywhere in your code (e.g., the text of an About box or splash screen) by retrieving

them using the My.Application.Info object. For example:

 ApplicationNameLbl.Text = My.Application.Info.ProductName

 VersionLbl.Text = My.Application.Info.Version.ToString()

To set assembly properties, choose Properties from the Project menu, or open “My

Project” from the Solution Explorer window.

There are several properties you can set from here. The most complex is the version

number. All the assembly properties are stored in the text file AssemblyInfo.vb,

which you can edit directly if you wish. You can also change the icon (browse for a

.ico file) that shows for your application. (Note there are a number of free online tools

that will convert .gif files to .ico files.)

Version Numbering in .net

The version number of an application (“Assembly version”) typically consists of a series

of numbers, each in the range 0 to 65534. One common scheme is to use

major.minor.revision. The .net scheme uses 4 numbers major.minor.build.revision (see

Version System), where:

 The major number only increments for a complete redesign of the code, a new user

interface, or total new functionality. (Or, the marketing department insisted.) A new

major number should be assigned if the new version is not compatible with the old

version. When the major number changes the minor an revision numbers generally

get reset to zero.

 The minor number increments for non-major changes that are user visible, such as

huge bug has been fixed (or a set of them), a performance improvement, or some

added or changed functionality that didn’t warrant having the major number

increment. Newer (higher) minor numbers (but the same major number) should

indicate the new version is backward compatible with the previous version.

 The build number changes every time you make a public release. (That is, you re-

compiled the code and selected the result to be make available.) You have different

http://msdn.microsoft.com/en-us/library/system.version.aspx

 Visual Basic I (COP 1820) Lecture Notes of Wayne Pollock

Hillsborough Community College Page 3 3/11/2010

build numbers when recompiling for a different platform, CPU type, or new compiler

version. Typically these are based on the date of the release and can be a timestamp

(number of seconds or milliseconds since 1/1/1970 00:00:00 GMT) or YYYYMMDD,

or just some small number that you keep track of within your organization, so you

know which date a build number indicates. (MS Office uses this scheme: MMDD,

where MM is the number of months since the year the product was first released and

DD is the day of the month. So for Office 2003 a build number of 3417 indicate a

build on Oct. 17, 2005.)

 The revision number (a.k.a. patch number, bugfix number) increments every time

changes are committed to the source code. “Committed” has a specific meaning here;

this is an action done when using some source code control/revision/management

system.

Some applications use major.minor.build-days.build-seconds instead. Non-.net

executables may use entirely different schemes.

When an application depends on another assembly, it will specify the assembly name and

version number it needs (in a file AssemblyInfo.vb). If that version can’t be found

your application won’t run. You can specify just a major (or major.minor) version

number. See AssemblyVersionAttribute for details.

To avoid having to re-build clients when you make minor (compatible) changes

to some assembly, it is common to leave the minor, build, and revision numbers

at zero all the time.

It is possible to have VS automatically set the build and revision number for you. You

must specify the version number as “major.minor.*” which causes the build number to be

set to the number of days since 1/1/2000 (local time), and the revision number to be set to

the number of seconds since midnight local time, divided by 2.

There are two version numbers you can set. The Assembly Version reflects the version

of the specification of the assembly. This is most important when your assembly is a

DLL. It changes when the API changes (types or methods added, modified or removed),

or when the semantics of the API change (a method now does something functionally

different). The File Version reflects the distribution. It changes when the binary image

(the .exe or .dll) of the assembly changes, even when the Assembly Version does not. It

is this version (plus the assembly name) that uniquely identifies the system to Windows.

While in theory the File Version allows any string to be used as a value, it is highly

recommended to use the same four number version string scheme as for the Assembly

Version number (and in fact, you can use the same value for both).

http://msdn.microsoft.com/en-us/library/system.reflection.assemblyversionattribute.aspx#remarksToggle

 Visual Basic I (COP 1820) Lecture Notes of Wayne Pollock

Hillsborough Community College Page 4 3/11/2010

Version numbering schemes change over time and can be very confusing. Sun

and other organizations have taken to have two version numbers for products, an

internal number, and a number determined by the marketing department that is

hopefully more user-friendly.

Creating a Splash Screen

A splash screen is a type of window that quickly loads and displays when an application

is loading. This is useful since many applications can take a very long time to load and

display a complete user interface. Displaying a splash screen during this time gives

feedback to the user that the program is indeed starting.

Some splash screens include a progress bar to indicate the loading progress. This is

especially useful when some application has a lot of plug-ins (add-ons) to load.

VB.net includes a template splash screen, a type of form only the window doesn’t have a

title bar or scroll bar. This standard splash screen includes the same sort of assembly

information that commonly appears on an About window.

Once you add to your project and set up the splash screen the way you want, you need to

set it to display first. You can select a form to use for a splash screen from the project

properties page. This form displays while the “startup form” is being created and

displayed. Once it is ready to go the splash screen automatically disappears.

For simple startup forms, the splash screen can disappear so quickly the user has

no chance to see it. You can force the splash screen to stay visible for a

minimum amount of time (say 3 or 4 seconds, or more) but doing so requires

advanced techniques. Your book shows how to delay the closing of the splash

screen, but if it has been visible for 10 seconds already you don’t really want to

keep it visible for another 5 seconds!

The correct technique is to start a timer when the splash screen loads. When the

startup form is ready, the splash screen stays up until the timer expires; if it has

already expired you close the splash screen at once. There is an Assembly

property you can set for this, but it is tricky to do so. See

My.Application.MinimumSplashScreenDisplayTime.

Working with Forms

Using forms works the same as for dialogs. You can show them either modally or

modelessly, using Show (modeless) or ShowDialog (modal). (See discussion on page

Error! Bookmark not defined..)

You can hide a form with Hide. This sets the forms Visible property to False.

(You can also change that to True or False to show and hide a form).

You can also use Close. If the form is shown modelessly Close completely removes

it from memory. You would have to create a new instance of it with show to view it

http://msdn.microsoft.com/en-us/library/ms234874.aspx

 Visual Basic I (COP 1820) Lecture Notes of Wayne Pollock

Hillsborough Community College Page 5 3/11/2010

again. But if a form is modal than Close is the same as Hide. so if you later make it

visible again, the same form (with previous state —textbox contents, checkbox and radio

button choices—intact).

Like all controls, Forms have various events associated with them. You can put code

in the appropriate event handler to do something when a form is Loaded (created but not

yet made visible), Activated (each time the form is made visible), FormClosed (occurs

when the form is closed), and several others too.

Forms have lifetime or milestone events that occur in order: Load, Activated,

Paint, Deactivate, FormClosing, FormClosed.

To have the VS Designer tool create stub event handlers for forms is easy. Like all

controls you just double-click on the from; this will create a Load event handler. To have

VS create stubs for other event handlers, you view the code for some form. At the top-

left, where is shows “General”, select “(NameOfForm Events)”. From the top-right,

where it shows “(Declarations)”, select the event handler you want to create.

You can also create these from the Designer window (for any control, not just forms).

Select the control (the form), and in the properties window, click on the Events button

(the one with the lightning bolt). You can then double-click on any event shown to create

a stub handler for it.

Review of Scope and Lifetime (See page Error! Bookmark not defined.)

Block/local scope: visible from the point of declaration to the end of the block it was

declared in.

Class/module scope: visible throughout a class or module.

Name hiding: occurs when a local variable has the same name as a class/module one.

Use Me.name to refer to a hidden class/module scoped variable.

Block/procedure lifetime: the variable/object is created when the flow of control passes

through the declaration, and it is destroyed when the block/procedure end is

reached.

Whole project lifetime: The variable/object is created when the project loads (roughly)

and remains in memory until the project exits.

Using modifiers to change the scope, lifetime, and other attributes

Using Static to change lifetime: Normally block/local variables have

block/procedure lifetime, and class/module variables have whole project lifetime. You

can declare a local variable using Static to change its lifetime to whole project, but this

doesn’t change the scope.

 Visual Basic I (COP 1820) Lecture Notes of Wayne Pollock

Hillsborough Community College Page 6 3/11/2010

Using access modifiers to change scope: While there is no way to change the scope of

block/local variables, variables and procedures with class/module scope can be declared

to make them visible from other classes/modules.

 Use Private to prevent such access from outside the current class/module,

 use Friend to allow access from any class/module in the same assembly, and

 use Public to allow access from anywhere. (Unless your project type is DLL,

there’s no real difference between Friend and Public.)

There is also Protected, which allows a class scoped variable or procedure to

be accessed from a derived class. (This requires inheritance, which will be

discussed later.)

You can use Protected with Friend.

You should prefer to use Private unless you have a reason not to.

There are other modifiers too, that don’t affect access, such as Static (remember this

applies only to local variables), ReadOnly, Const, and Shared (applies only to class

variables and will be discussed later.)

Use the ReadOnly modifier to define a variable that needs to be initialized

with a non-constant value, but should never change after initialization. The

difference between ReadOnly properties and Const properties is when they

are resolved. The value of a Const property is hard coded into the CIL at

compile time. The value of a ReadOnly property is determined dynamically at

runtime . Also, ReadOnly fields are per-instance (per-object) by default,

whereas Const fields are implicitly Shared. If in doubt, prefer to use Const.

Namespaces

A namespace is hierarchical way to group modules and classes. All projects have a

default, or root namespace (by default, the same name as the project itself). All classes

and modules have a (fully) qualified name; so the class Foo in the namespace Bar has

the qualified name Bar.Foo. Some of the standard .net classes and modules have very

long qualified names.

To let the compiler know you will be referring to classes and modules in some

namespace, you use the Imports namespace statement. This allow you to use the

unqualified class/module name in your code. (Your project must include a reference to a

namespace before it can be used. A number are added automatically from the VS

template used. See the References tab on the My Project properties window.) The

References tab on the project Properties window also allows you to define imported

namespaces.

 Visual Basic I (COP 1820) Lecture Notes of Wayne Pollock

Hillsborough Community College Page 7 3/11/2010

If you don’t import the namespace, you will need to use the qualified names of classes

and modules.

In VB.net 2008. you can also import classes and modules, to allow you to refer to their

properties and procedures using unqualified names. You can also create aliases:

Systerm.Console.WriteLine("Hello")

or:

Imports System

 Console.WriteLine("Hello")

or:

Imports System.Console

 WriteLine("Hello")

or:

Imports Con = system.Console

 Con.WriteLine("Hello")

Building Assemblies

When you build your project, an assembly is created. This is either a .exe or a .dll file.

In either case the resulting executable depends on the .net runtime being installed. So if

you send someone a copy of your wonderful .exe and they don’t have the correct version

of .net installed, it won’t run.

