
Software Engineering

Writing code is just one aspect of crafting software and applications. You need to

understand design, testing, deployment, licensing, security, monitoring, managing, and

support of software, including the processes and procedures used in teams. One who

does all (or most of) that is often called a software engineer (as opposed to a programmer

or developer).

Generally, software engineering is more about the management of and process of

software development, although it definitely encompasses development too.

While you will need some experience before you can get hired to design and develop

some business-critical software (entry-level jobs are usually in programming and

support), you should become familiar with a few concepts and terms. (Qu: Why? Ans:

to communicate with software engineers you work with and to understand their needs so

you don’t become frustrated. Also, to grow into a more senior position.) See

monster.com for a sample SE job description.

Note that the U.S. Federal government allows the title “software engineer” for

almost any computer-related field, but some states (and some other countries) have

high standards for any job title including the word “engineer”. Florida is one state

where this is true. Professionals (in the legal sense) are held to a higher standard of

work and conduct than non-professionals.

In COP-2805C (Java II), we will learn more about these topics, focusing on professional

software development techniques and tools. As we begin to develop more complex

classes and programs, you need to know a few of the concepts and terms before next

semester:

JavaBean Standard

Some classes define getter and setter (accessor and mutator) methods, for each of the

object’s properties. In general, this is a bad idea. Fields are only there to support the

methods, and as an implementation issue are usually declared private. Sometimes,

however, it is a good idea. For example, Graphics.setXXX methods.

Too many such methods are usually a symptom of a poor design. Avoid the

mistake of have “dumb” objects, each with getters/setters (essentially, just database

records wrapped in objects), and one “brain” main method that does all the work.

This is not object-oriented!

The JavaBean standard for objects requires a pair of methods for each property, with

names getPropname and setPropname. Boolean properties may use

isPropname for the getter instead. Read-only properties don’t have a setter.

Enterprise frameworks and other advanced Java software use classes that follow this

standard. Objects of such classes are known as Java Beans, or more commonly, just

beans. By following the standard, these objects can be treated as “block-box”

components, added to applications without knowing the code. They can communicate

http://hiring.monster.com/hr/hr-best-practices/recruiting-hiring-advice/job-descriptions/software-engineer-job-description-sample.aspx
http://www.leg.state.fl.us/statutes/index.cfm?mode=View%20Statutes&SubMenu=1&App_mode=Display_Statute&Search_String=software+engineer&URL=0400-0499/0471/Sections/0471.031.html

with other beans using events (the observable pattern), be saved and restored as XML

text, and even edited in a GUI (that is, a GUI bean editor can automatically detect all the

properties and show them in an editor view. With a bunch of beans, you can actually

assemble a Java program without writing any code! (Note Swing components are beans,

allowing building user interfaces with drag and drop in IDEs.) See the JavaBean Trail in

Oracle’s Java Tutorial for more.

When to Define Methods

Start with class and object design (below), which comes from the software requirements.

The initial methods you invent should correspond to the messages (or commands)

invoked on objects. These methods define the possible behavior of the objects and

should be generally declared public. Should these methods be unwieldy, you can

define methods to remove duplicated code or to simplify or shorten the methods. Such

methods should be declared as private as they are just implementation methods, and

you should feel free to change them.

Rule of thumb: Keep methods focused on a single task, and shorter than a screenful or

“pageful”. (Actually, even shorter is better: good methods are often 10 or fewer lines

long.)

Some methods are basic utility methods (such as Math.cos) that don’t depend on any

object. Such methods should be defined as static. General utility methods that can be

reused in other projects should be public and be coded to be general purpose, if

convenient.

Actually, the initial design is to decide what classes to have, and the

responsibilities of each. For each class, then you decide what public methods are

needed to meet those responsibilities.

In class program: Show MsgBox.java, MsgBox2.java, MsgBox3.java programs that

has main ask the user for a line of input and then prints it within a box. Have students

complete similar program that invokes a method boxMsg(String message) to draw the

box around the String using System.out.print() and/or

System.out.println() for output. (Hint: Use String.length() and ignore

Unicode issues.)

 +-----------------------+

 | Danger Will Robinson! |

 +-----------------------+

Qu: Consider the drawLine method of MsgBox. What parameters should it take to

make it more generally reusable in other applications? Ans: indent, char to draw with.

Design Guidelines for Methods and Classes: Abstraction and Encapsulation

Abstraction: the process of finding the essential (and relevant for the current problem)

methods (behaviors) and fields (properties) of classes. You abstract the objects in the

problem domain to decide what the classes should be; you can write a verbal description

and examine all the nouns.

https://docs.oracle.com/javase/tutorial/javabeans/
https://docs.oracle.com/javase/tutorial/javabeans/

Each class should be concerned with a single entity (or set of related operations, when

creating utility classes such as java.lang.Math). Note that a single entity in the

problem domain may be represented by several objects in your program (ex: HCC new

registration system, what are the objects?). The reason is to keep each class focused on a

single concept (“separation of concerns”).

A class is cohesive if its methods and properties relate to a single abstraction.

Use top-down design for the methods discovered above. This may lead to additional

private methods.

The instance (and class) variables define the properties of the objects. (Q: What does an

object have to “know” or “remember” between method calls?)

Encapsulation is putting related items in a single place, and then hiding (making

“private”) the implementation details. (Most properties are private.)

Coupling is the amount classes are related to each other (that is, how “spread out” your

abstractions are). Proper encapsulation reduces coupling.

The methods define what the object’s behavior, what it can do. Usually there are public

methods for reading and changing the values of the private or package-private properties.

(Better than having public properties, since that increases coupling and lowers the data-

hiding and encapsulation that is so desirable to decrease debugging and maintenance

costs. Also mention cohesion.) The public interface of a class, package, or module is

known as its API. You want code in one class/package/module to only use the public

API of another. Keep in mind that a public API usually lives (and must be maintained)

forever! You can always make something public later, but can never hide something that

was public initially.

There are other design principles you should know. In the Java II course, you will learn

about the SRP (single responsibility principle) and DIP (dependency inversion principle).

For now, I will leave you will a simple illustration of these: separation of concerns. The

main method should not both be responsible for creating and wiring-up (or hooking-up)

the dependencies of your objects, and also responsible for running the application. It is

better (and common) to have a separate class just for the main method (the class is often

called “Main”), which creates the basic objects and connects everything together, then

calls some other method (often in another class) to actually run the application. As much

as possible, all methods (and classes for that matter) should only have a single

responsibility.

As it happens, not all Java classes are templates for objects. Some are templates

for data structures, or structs. What’s the difference? Objects are black boxes with

public methods. A struct generally has no methods and all public fields (or

equivalently, public getter and setter methods). (Remember class IntWrap?) An

example might be class Point, with two public fields x and y and no methods. A

more common example is working with real applications that store data in files or

databases. When transferring data to/from your program, you put the data in a

struct, often called a data transfer object (or DTO).

When designing a class as a template for objects, make the data private and

avoid any get/set methods if possible. When defining a struct or DTO, avoid

instance methods and either make the fields public or have public getter and setter

methods.

Java SE since 14 include a preview feature for this purpose, called records. A Java

record is similar to a Python tuple. Look for it in Java SE 16. (Mention Lombok if

time.)

What makes for good comments?

Know your audience; generally experienced programmers. The important thing about

comments is that you don’t write them for yourself. You write them for future

maintainers (possibly your own future self). They are not intended for programming

novices (except for teaching demos). All comments should be spell-checked and clear in

what they convey to the reader. In general, comments should appear near the code they

describe, such as at the end of a line of code or in a separate line just above the code.

A goal of writing good documentation is to anticipate the readers’

perspectives.

There are different types of comments:

• What comments refer to the actual steps taken. Use what comments to describe

what a chunk (also called a code fragment or snippet) of code is doing. Simple, clear

code needs fewer what comments. If during a code review you ask the author what a

chunk of code is doing, it either means that their code is unclear and/or the what

comments are deficient. Complex formulas, algorithms, Regular expressions, and

formats (file formats, date/time formats, and others), all need what comments. When

brain-storming using pseudocode, the steps you discover can become what comments

which are place-holders for code you intend to add, and you fill in the code later.

(These are often called TODO comments, and often you put that word in to find such

spots easily. Once you added the code, if the result is short and clear you then remove

the comment. (It is redundant “noise” at this point.)

Unclear code should not have what comments added. Instead, fix up the code!

(This is known as refactoring.)

Linus Torvalds (the inventor of Linux and of Git) said this (in the kernel code

style document): “Comments are good, but there is also a danger of over-

commenting. NEVER try to explain HOW your code works in a [what]

comment: it’s much better to write the code so that the working is obvious, and

it’s a waste of time to explain badly written code.”

While I agree with that, if you cannot come up with elegant solutions that are short

and obvious, what comments are better than nothing. Maybe your comments will

inspire others to invent more elegant code for your task. Here’s an example of a good

what comment for a regular expression that is not obvious:

// Format standard email dates, for example:

// Fri, 13 Mar 2020 11:29:05 -0800:

String RFC5322DateTimeRegExPattern =

"^(?:\s*(Sun|Mon|Tue|Wed|Thu|Fri|Sat),\s*)?(0?[1-9]|[1-

2][0-

9]|3[01])\s+(Jan|Feb|Mar|Apr|May|Jun|Jul|Aug|Sep|Oct|No

v|Dec)\s+(19[0-9]{2}|[2-9][0-9]{3}|[0-9]{2})\s+(2[0-

3]|[0-1][0-9]):([0-5][0-9])(?::(60|[0-5][0-9]))?\s+([-

\+][0-9]{2}[0-5][0-

9]|(?:UT|GMT|(?:E|C|M|P)(?:ST|DT)|[A-IK-

Z]))(\s*\((\\\(|\\\)|(?<=[^\\])\((?<C>)|(?<=[^\\])\)(?<

-C>)|[^\(\)]*)*(?(C)(?!))\))*\s*$";

(I bet even Linus would agree to have comments here!)

• Why comments refer to the reasons for writing the code in a particular way. A

why comment is for explaining a particular implementation decision or the

programmer’s intent, especially if it’s not the “obvious” design choice. If the obvious

choice is to use an int but you use a double or (even stranger) a String, a why

comment is useful.

There can be many reasons why some code was written in a non-obvious way. Some

examples include formulas that were rearranged to reduce round-off error or to avoid

overflow, code you are not allowed change, and code requiring non-intuitive design

for security reasons (say to eliminate side-channel attacks).

Why comments are also used to document the reasons for the code, often listing a

reference to an issue (or ticket) in some issue-tracking system.

Here’s an example of a good why comment, adapted from Robert Martin’s Clean

Code (p. 59):

// The following trim is required, since it

// removes leading space that would cause the

// the item to be recognized as another list:

String listItemContent = match.group(3).trim();

• A third type of comment is a how comment. These are for libraries and reusable

modules, and tell the reader how to use your code with their code. The Java “doc” (or

“API”) comments for Java SE is an example of this. (Such docs are usually extracted

from comments in the source code.) How comments are used to describe how to use

methods, fields, and classes of your code. Generally, only public methods and

fields need these, but never hurt on private methods too. How comments might

describe method argument types and ranges, return value type and range, method

semantics, pre- and post- conditions, and use cases (example code). They can include

warnings (such as this method is not thread-safe), examples, and references to other

documentation. What and why comments are generally not included in such API docs.

The how or API comments (also called doc comments) are specially treated in Java,

and are converted to HTML. These will be discussed at a later time.

• A fourth type of comment is a required comment. These are the comments you

must have at the top of each source code file. If your code is under any sort of license

or copyright, you can either list the license in the comments or include a link to the

license. (I’ve seen source code file with over 100 lines of such comments at the top!)

What else is required depends on circumstances. You might need to identify the

author(s) who wrote the code and purpose of the code. If any of the code came from

others (taken from StackOverflow for example), include references. For our class,

you must include the purpose of the file (“project x, to do such-and-such”), the names

of all authors, and any collaborations you used (“I found an example of this at URL

xyz”).

Required comments include compliance information, such as what standards the code

must meet. For example, security standards, financial standards, military standards,

etc. There are standards for code that runs on airplanes and boats. A common

example today is compliance with the EU’s GDPR (a European privacy standard).

Such comments may include a notice about who and when a compliance audit was

performed.

If the code is online or you use online systems to manage the software development

process (code review, issue tracker, wiki), have links for those as well.

Every organization will have different rules for required comments.

Bad comments should be eliminated. Some examples of bad/useless comments include

“//initialize variables”, “x = 2; //set x to 2”, “num = num +

1; // add 1 to num”, “//Default constructor:”, etc.

Often you can eliminate such bad comments by choosing better names. For example:

p = n * e + t; // Compute price

can be written as:

price = quantity * priceEach + tax;

The same applies to method names.

Avoid ambiguous comments, for example:

 // No file found means all defaults are loaded

That must have meant something to the author, but what? Is this a placeholder to remind

the programmer to do something later, or a statement that some other code was supposed

to load defaults, or something else?

Comments are a vital part of your code. Always keep them clear, correct, and

useful. Do not forget to update comments whenever you update the related code.

Programming Style and Program Development Process

Programs are read more often than they are written. Others must read your code. Do not

program sloppily, thinking you’ll “pretty it up later”. That never happens!

First, design your program; do not design “at the keyboard” (writing code before you

know what the code is supposed to do). Once you have the main design worked out (not

necessarily all the details), only then should you start writing code.

Every organization has a definition of acceptable “program style”. Fortunately,

each language has a generally accepted style documented someplace, and usually

organizations follow that closely. Code that violates the style rules is deemed

unacceptable (and there are automatic style checkers used). The exact style

followed by a team of developers does not matter as much as the fact that they all

follow the same style rules.

While many workflows are possible when crafting software, here’s a procedure that saves

time and works well with the few tools and techniques you already know (as beginning

programmers):

Start with the “what” comments. Decide on (public) class and method names to begin.

Put in empty public methods (except for their comments), with the correct method

signatures. These are called stub methods (or simply “stubs”). At this point you have a

do-nothing skeleton program that will compile without errors. (Non-void stub methods

also need a “fake” return statement or they won’t compile, e.g. “return 0;

//Stub”.) The comments here are what comments: a list of tasks done by that method,

in the correct order. If you cannot add complete what comments to your skeleton

program, you do not understand the task yet.

These what comments are a form of pseudocode. At the start, you are merely

brainstorming, putting in the comments where you think the matching code should go,

changing them around, and trying alternatives. Each such comment should be simple

enough that you can implement it in a few lines of Java code. (And if the code is clear,

you could remove the what comment; but please don’t in our class, so your instructor can

see your design.)

Sometimes you may not know what the steps should be. It is perfectly reasonable

“to play with code”, to see what might work. But once you have the right idea,

throw away that experimental, non-commented and non-designed code, and add in

the what comments to your skeleton that you now know to be correct. This is how

you should document your design of your methods in our course. (In the Java2

course, you will learn better ways.)

It is far, far easier to follow the correct style rules as you type, then to use sloppy

programming and try to make it nicer later. Remember that you may need to show

others your code before you are done, and if they cannot understand it or it is too difficult

for them to read it, you will not get any feedback other than “clean up this mess”. (Some

IDEs can enforce style rules for you.)

Use indenting and blank lines to improve readability; they do not slow down your

program! Use the proper indentation style shown in class and in the examples. For most

programs, you should indent 4 spaces each time. (Use spaces, never tabs. Most editors

have settings to convert tab to spaces as you type.)

Keep your lines shorter than 80 characters. Remember you can always break up long

lines into two or more shorter ones.

Now that you have a design in pseudocode comments, you are ready to write actual code.

Add declarations for the variables and objects you have decided to use. Choose an

appropriate type for your variables, planning for the future if the values become large (to

avoid overflow; see below). Choose descriptive names and use a consistent naming style.

To write the Java code for the methods of your classes, start working on one class and

one method at a time. Look at the what comments in that method, and pick one of them

to implement for now. Put the code for that one task below the comment you already

have. As you code, you can add other comments of course. And if your design changes

(“Drat! This won’t work!” or “Ah-Ha! A brainstorm!”), you can alter the what

comments as well.

After each chunk of a few lines is coded (using correct style!) that implement the one

what comment, save the file and then check for syntax errors by compiling. Do not

move onto the next chunk until what you have done so far compiles without error.

Finding and fixing bugs in a few lines is far easier than finding and fixing bugs in dozens

or hundreds of lines!

After working for a while, save your work to a backup such as a flash drive or

cloud storage. Nothing is more frustrating than losing hours or days of work

because your file got corrupted or deleted!

As you code, you need to pause every so often and reflect on the big picture:

Math related logic errors include overflow/underflow (ex: byte b = 100 + 100;),

floating point divide by zero (+Infinity, -Infinity, NaN), and floating-point round-off

errors (which require special comparison techniques). A programmer must ensure this

doesn’t happen. In fact, Java 8 added Math.addExact method (and other

Math.*Exact methods), which throws an exception on over/under-flow. You should

consider using these methods.

As you finish a method’s code, you should pause and spend some time to reflect on the

code before moving on, to see if you missed any error checking or other issues, or just to

make sure the code is as clear and simple as possible: Is you code free of logic errors?

Have you made your code safe and secure? Are there any compliance issues you need to

address? Can the code be improved? Always allow time for this and to change the code

if necessary, a process known as refactoring.

In 11/2012, the Stockholm Stock Exchange received an order for 4.3 billion futures

at a unit price of 107,000 SEK. This order would have cost nearly 460 SEK

trillion, or 131 times the entire GDP of Sweden. The bug that caused this false

order brought the exchange to a halt. It appeared to be an integer underflow that

created the 4.2 billion future order.

Other issues to watch for include security concerns and compliance with various laws and

regulations.

Debugging

Just because your code compiles does not mean it is error (bug) free! You need to run the

program with carefully selected input and verify the output is expected. This is known as

testing. But what if it isn’t right and the tests fail? You need to locate the point in your

code where you did something wrong (or forgot to do something), then fix it. This

process is known as debugging and there are many different tools and techniques that can

help with this. For now, here are a few methods that do not require learning any

additional tools or the ability to understand low-level system details. (As you grow as

software developers, you will learn other tools for debugging specific types of issues.)

To start with, ignore all compiler error messages except the first. The reason is that

the first error may cause the other error messages, and can hide additional errors. So

always solve the first syntax error and ignore the rest. Repeat until no syntax errors

remain and your code compiles.

To solve crashes or tools (such as IDEs) not working, you can copy the error message

and paste it into a search engine. The odds are very low that you are the first person to

have an issue with some existing software. Be sure to strip out of the error messages any

specific data from your code, such as your file name and line number of the error. If you

don’t find any results, it is likely the error was caused by something else, such as missing

software or incorrectly configured software. The various stackexchange.com sites are

generally considered reliable, especially stackoverflow.com, so when searching, see if

you can get an answer from there.

The final debugging technique you can use right now (as beginners) is known as

scaffolding. When your program runs but gives incorrect results, you need to narrow

down the part of your code where the error lies. Add System.out.println()

statements to print the values of variables and expressions at different points in your

code. The bug will be between the last print statement showing correct values and the

next print statement showing incorrect values. These print statements are meant to be

removed from the final working program. You can put scaffolding before some formula

to show the values used, and afterwards to show the result; in loops to see how many

times to loop goes around, at the top of methods to show the values passed in, etc.

If you are unsure where the bug is (and assuming there is only one!), put the print

statement showing the input data and the results near the end. If the results are wrong,

the error is earlier in your code. You can move the print statement to half-way between

the last position and the top. (If you have multiple scaffold statements, move the one

showing the wrong results half-way between its current position and the previous print

statement showing correct results.) This is known as bisection.

https://stackexchange.com/sites
https://stackoverflow.com/

It’s not always the case a developer has source code they can modify with

scaffolding. In some cases, you need to debug software from a third party without

source code available. With source code, you can use the debuggers built into

IDEs such as Eclipse or NetBeans. There are stand-alone debuggers as well that

don’t require source code. Some include the primitive command line tool jdb

(part of the JDK), Jswat, and YourKit.

Demo JDK 8 monitoring and debugging tools: Start some Java app (Davmail is

good), then run visualvm. (Add some plugins esp. visual GC.) Other tools:

jps, then jmap -heap PID. Also: jmap -histo:live PID. To browse the

heap, use jmap -dump:live,format=b,file=dump.dat PID, and then

jhat dump.dat and open browser to http://localhost:7000/. Also

show jconsole PID.

Do not re-invent the wheel! Reuse an existing class if one exists that will do the job.

When creating your own classes, think about designing in some features that will allow

you and others to reuse your class in future applications. This is what the huge number of

Java packages (of classes) is for.

Try to write efficient, readable code that minimizes round-off errors (by re-arranging

formulas). For example: Calculate a common expression once and store the result in a

variable. Declare variables as needed and initialize at the same time.

Testing: Most classes represent objects such as Person, Color, Button, etc., and are not full

programs. You can add a main method to such classes, solely to test each method of

that class: have your main method create an object of the class and call its methods with

test data. Then print the result and the expected result. This sort of testing (sometimes

called ad-hoc) is better than no testing at all, but better testing is very important in the

real world and will be discussed in the future.

https://github.com/nlfiedler/jswat
http://www.yourkit.com/
https://visualvm.github.io/

