
Regular Expressions Overview

Suppose you needed to find a specific IPv4 address in a bunch of files? This is easy to do; you just

specify the IP address as a string and do a search. But, what if you didn’t know in advance which IP

address you were looking for, only that you wanted to see all IP addresses in those files?

Even if you could, you wouldn’t want to specify every possible IP address to some searching tool!

You need a way to specify “all IP addresses” in a compact form. That is, you want to tell your

searching tool to show anything that matches number.number.number.number.

This is the sort of task we use REs for. Regular expressions (or “regexp” or “regex” or RE) are a way

to specify concisely a group of text strings. You can specify a pattern (RE) for phone numbers, dates,

credit-card numbers, email addresses, URLs, and so on. You can then use searching tools to find text

that matches.

Depending on the tool that supports REs, you can use them to match text (does the text match the

RE? true or false), extract matching text, or perform match and replacement operations.

Originally, REs were limited in what sort of strings they could represent. Over time, folks wanted

more expressive REs, and new features were added. In the 1980s, original REs became standardized

by POSIX as basic REs (BREs), and later, extended REs (EREs) were standardized with more features

(and fewer backslashes needed). Since then, people have kept adding more features to the utilities

and languages that supported REs. Today, there are many RE dialects. Java has one of the most

expressive and powerful dialects.

Regular expressions are often used with sanitizing, validating (discussed in Java II), and data parsing

tasks. Every programmer needs to know about regular expressions; they are used in most

programming languages, and in nearly any program that processes text data. See

java.util.regex.Pattern for more information; you can also practice with

RegExLab.jar found in our class resources. REs are used in many parts of Java, including

String.match, Scanner, etc.

The Good Enough Principle

With REs, the concept of “good enough” applies. Consider the pattern used above for IP

addresses. It will match any valid IP address, but also strings that look like 7654321.300.0.777

or 5.3.8.12.9.6 (possibly an SNMP OID). Crafting an RE to match only valid IPv4 addresses is

possible, but rarely worth the effort. It is unlikely your search of system configuration files

would find such strings, and if a few turn up you can easily eye-ball them to determine if they are

valid IP addresses.

It is usually possible to craft more precise REs. But in real life, you only need an RE good

enough for your purpose at hand. If a few extra matches are caught, you can usually deal with

them. (Of course, using REs in global search and replace commands, you will need to be more

precise or you may end up changing more than you intended.)

An RE is a pattern, or template, against which strings can be matched. Either strings match the

pattern or they don’t. If they do, the actual text that matched parts of the RE can be saved in named

variables (sometimes called registers). These can be used later, to either match more text, or to

transform the matching string into a related string.

Pattern matching for text turns out to be one of the most useful and common operations to perform on

text. Over the years, a large number of tools have been created that use REs, including most text

editors and world processors, command line utilities such as Unix (and Linux) grep, and others.

Even using wildcards to match file names at the command line could be considered a type of RE.

While the idea of REs is standard, tools developed since POSIX EREs use slightly different syntaxes.

Perl’s REs are about the most complex and useful dialect, and are sometimes referred to as PREs or

PCREs (Perl Compatible Regular Expressions). Java supports a rich syntax for REs, described in

java.util.regex.Pattern. (A hopefully more readable summary is available on our class resources.)

Most RE dialects work this way: some text (usually one line) is read. Next, the RE is matched

against it. In a programming environment such as Perl or when using an editor, if the RE matches

then some additional steps (such as modification of the line) may be done. With a tool such as Java’s

Scanner, the part of the text that matched is just returned.

Top-down explanation (from POSIX regex(7) man page):

An RE is one or more branches separated with “|” and matches text if any of the branches

match the text. A branch is one or pieces concatenated together, and matches if the 1st piece

matches, then the next matches from the end of the first match, until all pieces have matched. A

piece is an atom optionally followed by a modifier: “*”, “+”, “?”, or a bound. An atom is a

single character RE or “(RE)”.

If that makes sense to you, you’re a smarter person than I.

I believe the easiest way to understand REs is through examples. The basic syntax (that is the same

for any dialect including Java’s) is:

any char matches that char.

. (a dot) matches (almost) any one character. It may or may not match EOL, depending

if the DOTALL option is set. Also, it won’t match invalid multibyte sequences.

\char matches char literally if char is a meta-char (such as “.” or “*”). This is called

escaping (so “\.” is read as escape period). Never end a RE with a single “\”.

In Java, some special sequences are defined, such as “\n” to mean a newline, “\\” to

mean a literal backslash, “\digits” to mean a Unicode character, and so on. Java

has other special sequences that start with a backslash. (For example, “\p{Lu}” for

any Unicode uppercase letter.) For this reason, you should avoid escaping non-meta

characters; while legal, you might accidentally be typing a special sequence.

Java supports a convenient form of quoting that escapes all enclosed characters. With:

“\Qyour-text-here\E”, all characters between the \Q and \E are taken literally.

You need to be careful with backslashes! This is because REs are

stored in Strings, and that means backslashes are interpreted twice:

once as a String, and once as a regular expression. So if you wanted

an RE of “\.”, you need the String "\\.", and if you wanted

“\\”, you would need a String of "\\\\".

 [list] called a character class, matches any one character in list. The list can include one or

more ranges, such as a-z, A-Z, 0-9, or a sub-range of those. The list can include

multiple ranges or a mix of ranges and characters. In Java, you can use any part of

Unicode in a range, such as “[\u3040-\u309F]” to match Hiragana characters.)

An example: “[a-zA-Z0-9_$]” would match the characters that are legal in a Java

variable name.

[^list] any character not in list.

 To include a literal “]” in the list, make it the first character (following a possible ^).

To include a literal “-”, make it the first or last character (following a possible ^).

Metacharacters other than “\” lose their meaning in a list. (So you don’t need a

backslash for a dot or open brace, as in this ugly example of a list of four characters:

“[].[-]”.)

http://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html

List can include one or more predefined lists, or character classes. In some RE

dialects including Java, there are a number of predefined ranges you can use. Most are

denoted with a backslash+character, such as “\d” to denote a predefined list of all

decimal digits.

POSIX has some predefined ranges: alnum, digit, punct, alpha, graph (same

as print, except space), space (any white-space), blank (space or tab only),

lower, upper, cntrl, print (any printable char), or xdigit. An example use

(using POSIX notation): “[[:upper:][:digit:]]”. Java does not support this

notation.

In Java, you can use these classes using backslash notation: “\p{Lower}”,

“\p{Print}”, etc. Also some additional ones including “\p{ASCII}”,

“\p{javaWhitespace}”, etc. Some of the more useful ones: \d (digit), \D (non-

digit), \s (whitespace), and \S (non-space). So you could define a list of uppercase

letters and digits as “[\p{Upper}\p{Digit}]” or as “[\p{Upper}\d]”. (Yes

you can include lists within lists.)

Java supports additional character class (list) features, not discussed

here.

In addition to single character REs, some REs can match a sequence of characters:

Concatenated REs Match a string of text that matches each RE in turn. (So “A.B” matches three

characters starting with A and ending with B.)

RE{count} Exactly count of RE. (Example: “A.{10}B” matches 12 characters that start with A

and end with B.)

RE{min,max} max (but not the comma) can be omitted for infinity. (Example: “X{3,}” means

3 or more Xes.)

RE* zero or more of RE. (Same as “RE{0,}”.)

RE+ one or more of RE. (Same as “RE RE*”.)

RE? zero or one of RE. (Same as “RE{0,1}”.)

These are all greedy quantifiers. Greedy and non-greedy quantifiers

are explained below.

RE1|RE2 either match RE1 or match RE2.

 (RE) A grouped RE, matches RE. For example, “(ab){3}” would match “ababab”.

These are also called capturing groups.

Boundaries POSIX REs don’t define word delimiters, known as boundaries or anchors. These match the

null string at the beginning and/or end of something, such as a word. Java supports several

boundaries, including these (first two are in POSIX):

^RE an RE anchored to the beginning of the line.

RE$ an RE anchored to the end of the line.

\b a word boundary (for example, “\b12\b” matches “I have 12 dollars”, but

not “I have 123 dollars”).

\z end of data boundary.

Note that “^A” matches A at the beginning of a line, but “X^A” matches three

characters; in this case the “^” is taken literally. The exact rules for this behavior

depend on what options are in effect. In multiline mode, “foo$\R^bar” would

match foo at the end of one line and bar at the beginning of the next. The “\R”

matches the line terminator in between. (Multiline mode has other effects too.)

Precedence Rules

1. Repetition (quantifiers such as “*”, “+”. etc.) takes precedence over concatenation, which in turn

takes precedence over alteration (“|”). So “ab|cd” means either “ab” or “cd”. A whole sub-

expression may be enclosed in parentheses to override these precedence rules (ex: “a(b|c)d”).

2. In the event that a given RE could match more than one substring of a given string, the RE matches

the one starting earliest in the string.

3. If an RE could match more than one substring starting at the same point, it matches the longest.

(This is often called greedy matching.) Sub-expressions also match the longest possible substrings,

subject to the constraint that the whole match be as long as possible.

The +, *, ?, and {min,max}, as noted above (rule 3), match the longest possible match; they are

greedy quantifiers. Java also supports reluctant (or non-greedy; I like the term generous. :)

quantifiers as well. These match the shortest possible amount that allows the overall RE to still

match. They look the same as the greedy ones, but with a “?” appended: +?, *?, ??, and

{min,max}?.

The greedy match of the beginning part of an RE would prevent the following part from

matching anything, in many cases. In this event, backtracking occurs, and a shorter match is

tried for the first part. For example, the 5 parts of the RE xx*xx*x (matched against a long

string of ‘x’es) will end up matching this way: x|xxxxx|x||x.

Backtracking is powerful, but sometimes unnecessary. Since it is a performance hog, Java

supports maximum match (greedy) quantifiers that don’t backtrack. They are called the

possessive quantifiers: ?+, *+, ++, etc.

Back reference The actual text that matched each group in the RE is remembered in a register, numbered by

counting open parenthesis. For example, the regular expression: “([0-9]*)\1” would match

“123123” or “11”, but not “12312”. The precise definition is: a ‘\’ followed by a non-zero

decimal digit d matches the same sequence of characters matched by the d th parenthesized sub-

expression (numbering sub-expressions by the positions of their opening parentheses, left to right).

For example: “([bc])\1” matches “bb” or “cc”, but not “bc”. For example:

(((ab)c(de)f)) has \1=abcdef, \2=abcdef, \3=ab, \4=de

For performance reasons, Java supports non-capturing grouping as well.

“\0” means what matched the whole RE.

Examples of Simple Regular Expressions

abcdef Matches “abcdef”.

a*b Matches zero or more “a”s followed by a single “b”. For example, “b” or

“aaaaab”.

a?b Matches “b” or “ab”.

a+b+ Matches one or more “a”s followed by one or more “b”s: “ab” is the shortest

possible match; others are “aaaab” or “abbbbb” or “aaaaaabbbbbbb”.

.* and .+ These two both match all the characters in a string; however, the first matches

every string (including the empty string), while the second matches only strings

containing at least one character.

^main\s*\(.*\) This matches a string that starts with “main” followed by, optional

whitespace, then an opening and closing parenthesis with optional stuff between.

^# This matches a string beginning with “#”.

\\$ This matches a string ending with a single backslash. The regex contains two

backslashes for escaping.

\$ This matches a single dollar sign, because it is escaped.

[a-zA-Z0-9] Any ASCII letter or digit.

[^ tab]+ (Here tab stands for a single tab character.) This matches a string of one or more

characters, none of which is a space or a tab. Usually this means a word. (Simpler

would be “\S+”.)

^(.*)\n\1$ This matches a string consisting of two equal substrings separated by a newline.

.{9}A$ This matches any nine characters followed by an “A”, at the end of the line.

^.{15}A This matches a string that starts with 16 characters, the last of which is an “A”.

^$ Matches (empty) strings. (“.” would be an RE that matches non-empty strings.)

(.*)\1 Matches any string that repeats, e.g., “abcabc” or “byebye”.

Example: Parse a text configuration file, skipping comment and blank lines:

^($|#) // Either an empty line, or one that starts with ‘#’

Example: Determine if some string is an integer (number):

This is an interesting problem because it comes up a lot. Assuming you need to allow whole numbers

with an optional leading plus or minus sign. Also assume you don’t need to support weird forms of

integers such as 1e6, 12. , 1,000,000, or 0x1A. Also assume you don’t care if -0 or +0 is

considered a valid integer (you can modify the code if you do care).

 ^[+-]?[0-9]+$

Example: Find only legal IPv4 addresses of “num.num.num.num”, where “num” is at least one digit, at

most three digits including optional leading zeros, and in the range of 0..255 (note: all one line; split

here for readability):

 \b(([01]?\d?\d|2[0-4]\d|25[0-5])\.){3}

 ([01]?\d?\d|2[0-4]\d|25[0-5])\b

However, this simpler RE may be “good enough”:

 \b(\d{1,3}\.){3}\d{1,3}\b

 Example: Match Roman Numerals (note: all one line; split here for readability):

\bM{0,4}(CM|CD|D?C{0,3})(XC|XL|L?X{0,3})

(IX|IV|V?I{0,3})\b

Newlines and regular expressions don’t get along well. POSIX REs don’t support them. Some

RE engines can use “multiline” matching (including Java). Many RE engines support a number

of options like this.

Email addresses as defined by RFC-822 and the newer RFC-5322 standards were not designed to be

regexp-friendly. In some cases, only modern (non-POSIX) regular expression languages can handle

them. Compare these two email address matching REs: ex-parrot.com and stackoverflow.com.

Keeping in mind the good-enough principle, here’s the much shorter one I use to validate the email

addresses in my RSS feeds (this is not the Java RE dialect; see if you can follow it anyway):

https://www.mathsisfun.com/roman-numerals.html
http://ex-parrot.com/~pdw/Mail-RFC822-Address.html
http://stackoverflow.com/questions/201323/using-a-regular-expression-to-validate-an-email-address/1917982#1917982

([a-zA-Z0-9_\-])([a-zA-Z0-9_\-\.]*)@(\[((25[0-5]|2[0-4][0-

9]|1[0-9][0-9]|[1-9][0-9]|[0-9])\.){3}|((([a-zA-Z0-9\-

]+)\.)+))([a-zA-Z]{2,}|(25[0-5]|2[0-4][0-9]|1[0-9][0-9]|[1-9][0-

9]|[0-9])\])(*\([^\)]*\) *)*

As can be seen from that last example, REs can be very complex. This makes them hard to read or

debug. You can often break up a complex RE into multiple REs, each matching a portion of the

string, to make each piece simpler and easier to debug and to test.

For long REs, it can be a good idea to format them across multiple lines, with spaces added for

readability. Comments can be included as well with Java REs. The following nonsense example was

stolen adopted from Leif Moldskred, posted in the comp.lang.java.programmer newsgroup

(“G#” means “grouping number, which can be use with backreferences later):

 Pattern exampleRegex =

 Pattern.compile("^\\s*" // Start of string, optional whitespace

 + "(19[5-9][0-9]|20[0-9][0-9])" // G1: four digit year, from 1950 to 2099

 + "-(0[1-9]|1[012])" // '-' divisor, G2: month, 01 to 12

 + ":((\\w+\\s?)*)" // ':' divisor, G3: one or more words,

 // separated by a single whitespace

 + "(:(.+)?)$" // Optional: ':' divisor, G6: Remaining contents of line

);

In Java 8, a new checker framework is available (but not included) that include many new

annotations. These instruct the compiler to perform additional checks for possible errors. One of

these new annotations is @Regex. This provides compile-time verification that a String intended

to be used as a regular expression is a properly formatted regular expression. (It doesn’t check that

the RE does what you want, however.)

Using Regular Expressions

In Java, you pass a RE as an argument to either the Pattern.compile(RE) or the

Pattern.compile(RE, flags) static methods. To use the RE (Pattern object), you then

create a Matcher object from it and some text to match against. Finally, you can call various

methods of the Matcher object to see if the RE matches, to extract matching text, or do other things.

Here’s a couple of examples of matching a RE against a whole String (useful for data validation):

Pattern p = Pattern.compile("a*b");

Matcher m = p.matcher("aaaaab");

boolean b = m.matches();

// Or:

boolean b = Pattern.matches("a*b", "aaaaab");

// Or:

boolean b = "aaaaab".matches("a*b");

// Or:

boolean b = Pattern.compile("a*b").matcher("aaaaab"

).matches();

Matcher objects have many useful methods:

matches() compares the whole string to the RE (i.e., there’s an implied "^" and "$" around the

RE).

find() has no implied anchors, so it can find substrings. You can use find() in a loop to find

the first, second, etc. match.

group() returns the String that matched. When using capturing groups, you can return the

nth group with group(n). You can find the index of the start and end of each group (from the

source string) using start(n) and end(n).

Finally, there are the methods replaceFirst() and replaceAll(), with the obvious

meanings.

To replace one group of the matched text, you can use the start(n) and end(n) methods to get

the index of the start and end of the matching nth group. You can then use simple String or

StringBuilder methods to replace that. (Show RegexDemo.java.)

