
 Java (COP 2800) Lecture Notes of Wayne Pollock

 Page 1

Lecture Notes — Packages, Modules, and Jar files

Packages are a collection of .class files (i.e., classes, interfaces, enums, and
annotations, referred to as types or as package members) in some directory
(folder). Using packages provides access control (package-private access) and
namespace management (so your names don’t collide with other names).

This material will make more sense if you understand about files and directories,
pathnames, and the special names “.” and “..”. If you are unfamiliar with these
concepts, remember the “Windows shell” tutorial at the top of our class
resources.

A package name should consist of all lowercase letters, digits, and possibly
underscores. (Package names must be legal folder/directory names for any system!
Best practice is to use lowercase letters and digits only, starting with a letter, and keep
the name shorter than 12 characters.) Periods have a special meaning in a package
name, as discussed below.

Typically, the DNS name of an organization is used, backwards, with underscores (or
nothing) replacing illegal characters (such as hyphens). Each period-separated string is
a path component, and refers to a directory. For example, one might name a package
“com.example.myapp”. This scheme is not required and for experimenting and
learning, shorter names such as “myapp” can be used.

To put your class MyClass in a package “foo”, put the MyClass.class file in a directory
“foo”, and add this to the top of MyClass.java:
 package foo; // directory "foo"

Some additional examples:
 package foo.bar; // directory "foo/bar"
 package com.my_company.my_application; // directory

"com/my_company/my_application"

The package declaration must go before any other Java statements in a source file,
except for comments and blank lines. You can have only one package declaration per
source file.

Without a package declaration, a class becomes part of a nameless package
regardless of which directory it is in. (This nameless package is also known as the
default package.) Thus, all classes are in a package.

Packages can contain other packages in a hierarchy; however, importing one package
doesn’t import the sub-packages! (Sun described package names as non-hierarchical.)

To refer to a class in another package, you can use its qualified name (e.g.,
“foo.MyClass”). Use import statements to allow you to refer to the classes in imported
packages by their unqualified names (e.g., “MyClass”). (Review the import statement,

 Java (COP 2800) Lecture Notes of Wayne Pollock

 Page 2

page Error! Bookmark not defined.). A class can always refer to other classes in the
same package as itself with an unqualified name; no import statement is needed.

It is not possible in Java for a class in a named package to refer to a class in the
default, nameless package. (There’s no name for the import statement.)

Wildcard imports are convenient to type and have no effect on the resulting code. But
they can make your code harder for readers to understand. IDEs such as Eclipse have a
feature “Source->Organize Imports” that will expand these to a list of actual class names
you used.

Note that importing several packages may lead to name collisions. In that case the
compiler will report an ambiguous name, and you must then use the qualified names.
There are few conflicts in the Java standard library; two I know of are Timer and Date.
You can add an explicit import to resolve the conflict:

import java.util.*; // Has a Date class

import java.sql.*; // Has a Date class

import java.util.Date;

... Date d = new Date(); // Uses java.util.Date

If you need to use both Date classes in one program, you will need to use a fully-
qualified name for one or both of them.

From the JLS#7.4.2: “Unnamed packages are provided by the Java platform
principally for convenience when developing small or temporary applications or
when just beginning development.” All production quality Java classes should
be in packages. Note, it is not possible for a class in a named package to refer to
any class in the nameless package!

How Java Finds Packages (when not using modules)

The JVM finds class files using an implementation-defined version of
java.lang.Classloader. (Oracle’s Java procedure is documented in the JDK tools
documentation.) In essence, there is a list of directories (folders), jar files, and zip files
that are searched, for a given class. This list of places is called the classpath.

A package name is a relative pathname (qu: what is that?) to some directory. But what
is it relative to? Java looks for packages in several places. A package may be found in
some directory or in some jar or zip file; let’s call these package containers (not an
official term).

The classpath is searched for packages; that is, you list the places containing
packages, not the package directory itself. It is also searched for classes in the
default, nameless package.

The classpath is constructed from several different settings. The details are mostly
unimportant, and have changed often between releases of Java. Java looks in:

https://docs.oracle.com/javase/8/docs/technotes/tools/findingclasses.html
https://docs.oracle.com/javase/8/docs/technotes/tools/findingclasses.html

 Java (COP 2800) Lecture Notes of Wayne Pollock

 Page 3

1. The package containers listed in the bootclasspath, which by default contains
rt.jar and charsets.jar, (different names in older versions.) These contain
the core class files (the classes in the packages starting with java. or javax).
(Show via 7zip.) Note: A jar file is a Java archive file that can contain packages
and applications, and will be discussed later. On Unix/Linux/Mac, directories in
the list use a colon separator. On Windows a semicolon is used.

Some packages are not developed by Sun/Oracle but are still part of the
standard JRE library. These are called endorsed APIs. Such packages may be
included in the jars listed in bootclasspath, but can also be in jars in the
directories listed by another Java property, java.endorsed.dirs. As of Java 6
the endorsed packages are the org.omg.* ones, plus javax.rmi.CORBA.
Separating core and endorsed packages this way makes it easier to update the
endorsed packages between JRE releases. You could change the location to
search for jars containing endorsed packages with the option
“-Djava.endorsed.dirs=directories”.

As of Java 8U40, the endorsed directories concept has been deprecated.

2. The extension directories can contain jar files that will be searched for
packages. As of Java 8U40, the extension directories concept has been
deprecated.

3. The general CLASSPATH. This is affected by the CLASSPATH environment variable
(see below) or specifying -classpath (or -cp) on the command line of JDK tools,
as discussed below. The CLASSPATH is a list of package containers, used to
search for packages, classes in the nameless package, or other resource files
(e.g., “.gif” files). This list uses a colon or semi-colon as a separator, just like the
bootclasspath.

CLASSPATH

CLASSPATH is an environment variable (Qu: what is that?) that tells Java where to look
for packages. (Look at CLASSPATH now.) It is a semicolon separated list of directories
and jar files that contain packages. It is not a list of packages. (On Unix, it is a colon
separated list.) (See the Oracle Java 8 CLASSPATH documentation for all the details.)

(Applets don’t use CLASSPATH to locate packages. Qu: Why not?)

Classes in the default nameless package are also found by searching CLASSPATH.

If you don’t set CLASSPATH at all, the default path of “.” is used (the current
directory). This is just what you want most of the time; you’ll only need to change this
in advanced situations.

Example: Suppose you want Java to find a class named Foo.class in the package
util.myApp. If the path to that directory is C:\java\MyClasses\util\myApp,
you would set the class path so that it contains C:\java\MyClasses.

https://docs.oracle.com/javase/8/docs/technotes/tools/windows/classpath.html

 Java (COP 2800) Lecture Notes of Wayne Pollock

 Page 4

You can use java[c] -classpath (or -cp) dir-list to add to the classpath. (Use
javac -d dir to say to put generated class files under dir.)

When working from the command line, it is often easier to put the .java files in the
directory where you want the .class file to go. Now you can “cd” to the top level of
your application (above any packages), and compile the top .java file. javac will find
and compile all .java files in all packages automatically, as needed. (And only if
needed: if the .class file and .java file are both found, the timestamps of the two are
compared to see if the .java file needs to be compiled again.)

(Demo: C:\Java>javac C:\Java\pkg\Foo.java) If the source files are kept
elsewhere, you can use javac --sourcepath list.

Normally, javac puts generated .class files into the same directory as the source file.
Afterward, you need to create the package folders and move the .class files into them.
By using -d dir option to javac, you can specify where to put packages (or classes in
the nameless package). For example, if Foo.java has the package statement “package
pkg;”, and the source file is in the current directory (so there is no pkg folder yet),
running “javac -d . Foo.java” will create “pkg/Foo.class”.

CLASSPATH (since Java 6) can contain the wildcard “*” to refer to all JAR files in
some directory. To add all the JARs in directory “foo” to your CLASSPATH, just use
“.;foo/*”. (Wildcards can’t be used in the Class-Path JAR manifest header.)
Wildcards are thus similar to the extensions mechanism, now deprecated.

Best practice is to create a directory (I call mine “C:\Java\MyJars”) and put all
additional jar files (such as JUnit.jar) in there. Then include this directory:
CLASSPATH=.;C:\Java\MyJars*. You can also list directories where you
install things such as Glassfish, Tomcat, etc., that contain many jars that must
otherwise be listed on CLASSPATH.

Java 7 includes a useful non-standard option that can show many things, including the
classpath: java -XshowSettings -version

Dangers of CLASSPATH: Runnable jar files require more work to use optional packages,
but it is possible. Extension directories have security issues.

Copying jars into a directory listed on CLASSPATH is dangerous since updates won’t
automatically get copied there. This problem is known as deployment; when you
change/update any package, you must also remember to deploy it (copy the jar) to the
correct directories. You have the same problem for any packages you use. For
example, database driver jars; when you update Derby DB (a.k.a. JavaDB), you must
remember to copy the new jars. In some cases, I prefer to add additional directories to
CLASSPATH; it is for this reason I generally install in directories without any version
numbers (so I don’t have to remember to update CLASSPATH). For example,
“CLASSPATH=.;C:\Java\db\lib*;C:\Java\MyExt*”

 Java (COP 2800) Lecture Notes of Wayne Pollock

 Page 5

The use of CLASSPATH is the result of using the default ClassLoader. Sometimes a
custom ClassLoader is used instead (for security or other special purposes), and then
none of this section applies. See also java.lang.ClassLoader for some more details on
the search done.

Extensions found on a system-wide CLASSPATH are visible to every Java program. If
another program decides that it needs different version of the same classes, then either
one version or the other version will not be loaded (that is, both apps will use the same
version). Using the -cp option, or per-project CLASSPATH, settings will avoid this
problem.

To run a stand-alone application that’s in a jar, double-click it or run as
java -jar file.jar. But in this case Java ignores the CLASSPATH. It will only look
inside of that JAR. You need to set the Class-Path: list entry in the manifest file
included in that jar instead. (The jar tool is discussed later.)

It is practically impossible to have one CLASSPATH that satisfies all possible
compilations and all possible applications. Installers will meddle with it, causing
programs to work and then mysteriously stop working after you update something
unrelated but that changes CLASSPATH.

So the best practice is to keep your dependencies contained to the app that needs them,
by using jars and listing a custom Class-Path: list in the manifest (or using “-cp
list” on the command line), and avoid using the (global) CLASSPATH environment
variable. (Note, this is what IDEs do internally, when you change project settings.)
Second-best: use wildcard settings in CLASSPATH (to define a JRE-independent extension
directory).

Java Web Start lets you skip the JAR Class-Path entries in favor of JWS’ own
“libraries” mechanism. This still relies on being allowed to distribute 3rd party
JARs with your application, but it makes managing them and launching the
program easier.

Remember: If you put a class in a file without a package statement, it belongs to a
“nameless” package by default. Java uses the same mechanisms to find these as it uses
to find packages.

Remember: Java source files can have only one package statement, which must be the
first statement in the file (that means before any import statements).

Review the standard Java packages (API). Show the on-line API Docs, have
students set a bookmark/favorite to it. Note: Never import java.lang. Also
note that java.math (a package) is not the same as java.lang.Math (a class).

Show PkgDemo.htm. Next, try moving your package to another location. Use the “-cp”
cmd line arg. Next bundle it in a jar and use it via -cp. Now move the jar to the JDK’s
ext dir, then the JRE’s ext dir, and then the system-wide ext dir. Use “java -

 Java (COP 2800) Lecture Notes of Wayne Pollock

 Page 6

XshowSettings” to see the ext directories used for your system. Next, try putting
PkgDemo inside a new package. Point out you need to compile from the base directory
(containing your packages), so javac can find your packages by looking in the “.”
(current) directory. You need to run from there too.

Summary: Using non-standard (that is, not part of the JRE) packages with your code can
be a pain. You can bundle these packages with your own code in a single jar file (jar
files can contain other jar files), use Java Web Start to deploy your applications, or make
users download the packages and install them correctly, themselves. Always consider
the problems of deployment and version changes when using non-standard packages.

 Ignoring the JRE bundled packages (and the deprecated features of extension and
endorsed directories), Java finds other packages (and classes in the nameless package):

1. in the current directory if CLASSPATH isn’t set (the default);
2. the package containers listed in CLASSPATH override the default;
3. the package containers listed with -cp, which override any CLASSPATH setting;
4. the package containers listed inside a jar file, which overrides all other settings.

Remember, CLASSPATH can list wildcard directories, which adds all jar files in those
directories to the classpath. The classpath setting inside a jar file cannot contain
wildcard directories.

The rules of Java make it difficult to create a self-contained application. A new
JDK tool called the Java Packager tool makes this possible.

Modules — Since Java 9

All the changes to how Java locates packages over the years discussed above is strong
evidence that the whole mechanism is poor. Applications often need bundles of
packages, and they need to be specified in a specific order to have a reproducible build.
In fact, the issues have become known as Jar Hell.

To address these issues, Java 9 added a new mechanism to Java: modules. Just like a
package is a collection of classes, a module is a collection of packages.

Modules don’t use classpath, but rather a module path, to locate modules. Modules
provide lots of checking for consistent use. For example, only packages that are
declared exported can be used by other modules.

Modules was known as project Jigsaw, started before 2011, and was originally planned
for Java 7. It took many years to get it right!

Creating a module is easy. First, create a directory to hold your module. Normally, you
name the folder the same as the module, but that’s not required:
 mkdir foo

Now you create your packages inside of that folder:

http://docs.oracle.com/javase/8/docs/technotes/guides/deploy/self-contained-packaging.html
https://en.wikipedia.org/wiki/Java_Classloader#JAR_hell

 Java (COP 2800) Lecture Notes of Wayne Pollock

 Page 7

mkdir foo\bar

notepad foo\bar\Main.java

In this example, my class is named bar.Main (the class Main in the package bar).
Assume the code is a basic Hello World app.

Finally, you add a module descriptor to the module’s directory. The descriptor is
named module-info.java:
 notepad foo\module-info.java

The contents of that file state the module’s name, what other modules it depends on,
and which packages it makes visible to other modules. A working and minimal file in
this case is:
 module foo {}

That’s it! Module foo does not depend on (“require”) any other modules, and exports
no packages. If it depended on a module x.y.z, you would need to add “requires
x.y.z;” in there.

The compiled module needs to be put somewhere. The convention is to use a directory
named “mods” for your modules:

mkdir mods

javac -d mods\foo foo\module-info.java \

 foo\bar\Main.java

To run your module, you must set the module path so it can be found. Then you specify
the name of the class to run using the syntax module/class:
 java -p mods -m foo/bar.Main

(The “-m” is to specify the class from a module; they did that I think to preserve
compatibility with older Java, so you can run Java 8 apps the same way we always did.)

Modules are typically packaged in Jar files (discussed below). Such modular Jar files
are commonly kept in a directory named mlib (where “lib” is the common name for
non-modular Jars):

mkdir mlib

jar -cfe mlib\foo.jar bar.Main -C bar .

If you set a main class as in the example, you can then run your application with:
 java -p mlib -m foo

Note there is no environment variable for setting the module path. It is also not
well documented what can be listed on the module path; clearly, at least directories
containing module Jar files or “exploded” modules can be listed.

The JRE has been modularized as well. All Java SE classes are in one or another module,
whose names begin with “java.”, and are found in JAVA_HOME\jmods. Other, non-
standard modules shipped by your JDK vendor will have names starting with “jdk.”

 Java (COP 2800) Lecture Notes of Wayne Pollock

 Page 8

The standard modules are not in Jars, but a newer format with the extension
“.jmod”. You can still open them with a zip utility to see what’s in them. Indeed,
Java 9 introduced several new formats, including jmod, modular Jars, and multi-
version Jars.

Similar to how the java.lang package contains the most basic classes and does not
need to be imported, the most basic packages are in the java.basic module and
that is always available; you do not have to add a requires statement for it to your
module-info.java file. However, java.basic does not include all of the Java SE
classes! For more than Hello, world, you may need to add one or more requires
statements. Note, the Java 9 API docs now also list the module containing a class, and
not just the package. You can also use the JDK tool jdeps to find and show all the
dependencies of a module.

All packages are in a module. If you don’t have a module descriptor (module-
info.java), then your package ends up in the unnamed module. Similar to the
unnamed package, you can use other modules in your code. However, code in named
modules cannot use code in the unnamed module (there’s no way to “requires” it
since it has no name).

Eclipse Oxygen 1a supports Java 9 and modules, but not completely yet. To put
your packages in a module, create a properly named source folder in Eclipse,
named for the module. Put your packages in there rather than “src”. Right-click
the project, choose “configure-->add module-info.java”. Edit the generate file so it
has the correct exports (if any). That’s it!

There’s more to know about modules and how they work with legacy packages. More
details on modules will be presented in the Advanced course.

Jar Files — Creating and Using
Zip = Jar, except for Manifest file (and other optional extra files). Describe the jar tool:
 jar{-c|-t|-x|-u|…}[-v]-f file.jar -e main-class
Point out JAR files can hold packages and can be listed on CLASSPATH. Jars are also
used to hold WAR files (web archive, a whole Java EE web application with the
extension .war instead of .jar), EAR files (enterprise archives, containing an entire
enterprise Java EE application including Jars and WARs), create clickable stand-alone
applications, or create signed classes and/or sealed packages (for extra security).

Jar files can also hold media.

 Show SmileJar.java. (Add a splash-screen PNG “Miracle Software Co.”)

To compile or run some Java that uses a class in a Jar file, you must make sure that Jar
file is listed on CLASSPATH. If this is a common situation, you can modify CLASSPATH. If
you follow my suggestion on setting CLASSPATH, your CLASSPATH is already set to
something such as this:

 Java (COP 2800) Lecture Notes of Wayne Pollock

 Page 9

C:\Temp>set CLASSPATH

CLASSPATH=.;C:\Java\MyExt*

If so, you only need to ensure Jar files are in the directory C:\Java\MyExt and they will
be found.

If you don’t want to modify CLASSPATH permanently, you can compile and run your
program using an option to temporarily set the CLASSPATH. To compile MyFile.java
with the foo.jar Jar file, use this:
 C:\Temp>javac -cp.;foo.jar MyFile.java

The java command also has the “-cp” option, for running programs without needing to
modify CLASSPATH. (Build tools such as Eclipse, NetBeans, Maven, and Ant, use this
feature to set a CLASSPATH per project.)

 (It seems in Java 8, you can get away with just “-cp foo.jar”, but the docs say you
need the dot too.)

Demo downloading a package from the Internet and using it: Download Apache
Commons Math packages (in a zip). Show API doc for ...Primes class. Extract the
JAR file and put into the Temp folder. Now use:
import org.apache.commons.math3.primes.*;

public class Foo {

 public static void main (String [] args) {

 for (int i = 0; i < 20; ++i)

 System.out.println(i + ": " + Primes.isPrime(i)

);

 }

}

Compile it:
 javac -cp .;commons-math3-3.6.1.jar Foo.java
Run it:
 java -cp .;commons-math3-3.6.1.jar Foo

Note you need to have the JAR file on your CLASSPATH when compiling and
when running.

Finally, show how to use C:\Java\MyExt and CLASSPATH, to avoid needing to
use the -cp option each time.

https://commons.apache.org/proper/commons-math/download_math.cgi
https://commons.apache.org/proper/commons-math/download_math.cgi

