
Supplement: Java Packages

For Introduction to Java Programming

By Y. Daniel Liang

Packages are used to group classes. So far, all the classes

in this book are grouped into a default package. You can

explicitly specify a package for each class. There are four

reasons for using packages.

<Side Remark: why package>

 To locate classes. Classes with similar functions

can be placed in the same package to make them easy

to locate.

 To avoid naming conflicts. When you develop reusable

classes to be shared by other programmers, naming

conflicts often occur, i.e., two classes with the

same name. To prevent this, put your classes into

packages so that they can be referenced through

package names.

 To distribute software conveniently. Packages group

related classes so that they can be easily

distributed.

 To protect classes. Packages provide protection so

that the protected members of the classes are

accessible to the classes in the same package, but

not to the external classes.

1 Package-Naming Conventions

Packages are hierarchical, and you can have packages within

packages. For example, java.lang.Math indicates that Math

is a class in the package lang and that lang is a package

in the package java. Levels of nesting can be used to

ensure the uniqueness of package names.

Choosing a unique name is important because your package

may be used on the Internet by other programs. Java

designers recommend that you use your Internet domain name

in reverse order as a package prefix. Since Internet domain

names are unique, this prevents naming conflicts. Suppose

you want to create a package named mypackage on a host

machine with the Internet domain name prenhall.com. To

follow the naming convention, you would name the entire

package com.prenhall.mypackage. By convention, package

names are all in lowercase.

2 Package Directories

Java expects one-to-one mapping of the package name and the

file system directory structure. For the package named

com.prenhall.mypackage, you must create a directory, as

shown in Figure 1(a). In other words, a package is actually

a directory that contains the bytecode of the classes.

 (a) (b)

Figure 1

The package com.prenhall.mypackage is mapped to a directory

structure in the file system.

<Side Remark: classpath>

The com directory does not have to be the root directory.

In order for Java to know where your package is in the file

system, you must modify the environment variable classpath

so that it points to the directory in which your package

resides. Such a directory is known as the classpath for the

class. Suppose the com directory is under c:\book, as shown

in Figure 5.1(b). The following line adds c:\book into the

classpath:

set classpath=.;c:\book;

<Side Remark: current directory>

The period (.) indicating the current directory is always

in classpath. The directory c:\book is in classpath so that

you can use the package com.prenhall.mypackage in the

program.

You can add as many directories as necessary in classpath.

The order in which the directories are specified is the

order in which the classes are searched. If you have two

classes of the same name in different directories, Java

uses the first one it finds.

<Side Remark: classpath>

The classpath variable is set differently in Windows and

UNIX, as outlined below.

 Windows 98: Edit autoexec.bat using a text editor,

such as Microsoft Notepad.

 Windows NT/2000/XP: Go to the Start button and

choose Control Panel, select the System icon, then

modify classpath in the Environment Variables.

 UNIX: Use the setenv command to set classpath, such

as

setenv classpath .:/home/book

 If you insert this line into the .cshrc file, the

classpath variable will be set automatically when

you log on.

NOTE

On Windows 95 and Window 98, you must restart

the system in order for the classpath variable

to take effect. On Windows NT/2000/ME/XP,

however, the settings are effective

immediately. They affect any new command

windows, but not the existing command windows.

3 Putting Classes into Packages

Every class in Java belongs to a package. The class is

added to a package when it is compiled. All the classes

that you have used so far in this book were placed in the

current directory (a default package) when the Java source

programs were compiled. To put a class in a specific

package, you need to add the following line as the first

noncomment and nonblank statement in the program:

package packagename;

Let us create a class named Format and place it in the

package com.prenhall.mypackage. The Format class contains

the format(number, numberOfDecimalDigits) method, which

returns a new number with the specified number of digits

after the decimal point. For example, format(10.3422345, 2)

returns 10.34, and format(-0.343434, 3) returns –0.343.

1. Create Format.java in Listing 5.10 and save it

into c:\book\com\prenhall\mypackage.

Listing 5.10 Format.java

PD: Please add line numbers in the following code

<Side Remark line 1: specify a package>
package com.prenhall.mypackage;

public class Format {

 public static double format(

 double number, int numberOfDecimalDigits) {

 return Math.round(number * Math.pow(10, numberOfDecimalDigits)) /

 Math.pow(10, numberOfDecimalDigits);

 }

}

2. Compile Format.java and place it in

c:\book\com\prenhall\mypackage.

A class must be defined as public in order to be accessed

by other programs. If you want to put several classes into

the package, you have to create separate source files for

them because each file can have only one public class.

Format.java can be placed under

anyDir\com\prenhall\mypackage and Format.class in

anyOtherDir\com\prenhall\mypackage, and anyDir and

anyOtherDir may be the same or different. To make the class

available, add anyOtherDir in the classpath, using the

command:

set classpath=%classpath%;anyOtherDir

NOTE

Class files can be archived into a single file

for convenience. For instance, you may compress

all the class files in the folder mypackage

into a single zip file named mypackage.zip with

subfolder information kept as shown in Figure

2. To make the classes in the zip file

available for use, add the zip file to the

classpath like this:

classpath=%classpath%;c:\mypackage.zip

Figure 2

Class files can be archived into a single compressed file.

NOTE

<Side Remark: IDE source path>

<Side Remark: IDE class path>

An IDE such as JBuilder uses the source

directory path to specify where the source

files are stored and uses the class directory

path to specify where the compiled class files

are stored.

A source file must be stored in a package

directory under the source directory path. For

example, if the source directory is

c:\mysource, and the package statement in the

source code is package com.prenhall.mypackage,

then the source code file must be stored in

c:\mysource\com\prenhall\mypackage.

A class file must be stored in a package

directory under the class directory path. For

example, if the class directory is c:\myclass,

and the package statement in the source code is

package com.prenhall.mypackage, then the class

file must be stored in

c:\myclass\com\prenhall\mypackage.

***End of NOTE

4 Using Classes from Packages

There are two ways to use classes from a package. One way

is to use the fully qualified name of the class. For

example, the fully qualified name for JOptionPane is

javax.swing.JOptionPane. For Format in the preceding

example, it is com.prenhall.mypackage.Format. This is

convenient if the class is used only a few times in the

program. The other way is to use the import statement. For

example, to import all the classes in the javax.swing

package, you can use

import javax.swing.*;

An import that uses an * is called an import on demand

declaration. You can also import a specific class. For

example, this statement imports javax.swing.JOptionPane:

import javax.swing.JOptionPane;

The information for the classes in an imported package is

not read in at compile time nor runtime unless the class is

used in the program. The import statement simply tells the

compiler where to locate the classes. There is no

performance difference between an import on demand

declaration and a specific class import declaration.

Let us write a program that uses the Format class in the

com.prenhall.mypackage.mypackage package.

1. Create TestFormatClass.java in Listing 5.11 and

save it into c:\book.

Listing 5.11 TestFormatClass.java

PD: Please add line numbers in the following code

<Side Remark: import class>
import com.prenhall.mypackage.Format;

public class TestFormatClass {

 /** Main method */

 public static void main(String[] args) {

 System.out.println(Format.format(10.3422345, 2));

 System.out.println(Format.format(-0.343434, 3));

 }

}

2. Run TestFormatClass, as shown in Figure 3.

Figure 3

TestFormatClass uses Format defined in

com.prenhall.mypackage.

TestFormatClass.java can be placed anywhere as long as

c:\book is in the classpath so that the Format class can be

found. Please note that Format is defined as public so that

it can be used by classes in other packages.

The program uses an import statement to get the class

Format. You cannot import entire packages, such as

com.prenhall.*.*. Only one asterisk (*) can be used in an

import statement.

NOTE: The format method can be invoked from any

class. If you create a new class in the same

package with Format, you can invoke the format

method using ClassName.methodName (e.g.,

Format.format). If you create a new class in a

different package, you can invoke the format

method using packagename.ClassName.methodName

(e.g., com.prenhall.mypackage.Format.format).

