
Functions and Lambda Notation 

Java 8 includes a new syntax called lambda notation.  These can be used similarly to 

anonymous local classes, and in many cases can replace ugly anonymous class syntax 

with an easier to use syntax. 

Lambda expressions are anonymous functions which are intended to replace the 

bulkiness of anonymous inner classes, with a much more compact and efficient 

mechanism.  (The name comes from the original mathematical work on these, where the 

author used the Greek letter λ (lambda) to denote these; for Java, a better name would be 

“arrow notation” since you denote these with an arrow.) 

Java now has real functions!  Unlike a method, a function is not associated with 

any object.  You can use lambda notation to define functions, which can be passed 

to or returned from methods (or functions) and stored in variables.  While 

anonymous classes are stored in on-disk .class files, functions are not. 

To allow functions to be useful, methods that used to only accept objects that 

implemented a specific interface now (since Java 8) accept either such an object, 

or a function.  This only works if the interface in question is a functional 

interface: an interface with exactly one abstract method. 

While often used simply because the result is less (but clearer) code, adding 

functions was a huge change in Java. 

(Functions in Java are referred to as functions, lambda functions, lambda 

expressions, or simply as lambdas.  They are similar to and sometimes called 

closures.) 

Lambda expressions can come in several forms: 

a. (int x, int y) -> {return x + y;} 

b. radians -> 3.14159 * radians 

c. new Thread( () -> { 

   System.out.println("Hello World!" ); } ).start(); 

d. btn.addActionListener( ae -> {...} ); 

e. Collections.sort( myList, 
   (s1,s2) -> s1.length() - s2.length() ); 

The first expression (a) simply returns the addition of two integers.  In this case, the 

return type is inferred to be an integer.  The other expressions omit the “return” 

keyword and parameter types.  Example (b) omits the parenthesis and the brackets as 

well: the parens are optional when there is a single argument and you don’t specify the 

type; the brackets when the method body is a single expression.  (Brackets have be used 

if the lambda expression contains multiple statements.) 

In essence, the compiler has been made much smarter about determining the types of 

parameters and returns, so you don’t have to type them in.  The method call tells the 

compiler the type expected, and the lambda expression is “mapped” to that. 



Example (d) shows adding a new ActionListener object:  The compiler knows the 

argument to addActionListener must be an ActionListener object, and that 

interface has a single method “actionPerformed”.  So that must be the method 

provided, even if you pass a lambda (an anonymous method with no name) as long as it 

takes one ActionEvent argument and returns void.  Look at how much typing that 

saved! 

In this example, notice how the local variable minAge is used: 

 peopleList.removeAll(  e-> e.getAge() < minAge ); 

Normally these need to be made final, but with Java 8, the compiler does that for you.  

(The official term is effectively final.  Note that the compiler may not catch all violations 

of this, but it’s still a syntax error to modify variables from the enclosing scope.) 

There are some differences between lambda expressions (a.k.a. functions) and 

anonymous classes, such as: 

 Lambda functions can only instantiate functional interfaces (interfaces with a single 

(abstract) method), such as Comparable.  If the interface contains multiple 

methods, or you need to declare fields, you must still use (anonymous) inner classes.  

Java 8 includes many pre-defined functional interfaces.  You can define methods that 

take these as arguments, and later pass in a lambda.  See java.util.function. 

 Lambda functions have different scoping rules (“this” means something different).  

These rules are similar to the notion of closures from other languages, such as 

JavaScript. 

 Lambda functions perform better then methods (due to the use of the 

invokedynamic JVM instruction used to implement them). 

 Lambda functions don’t compile to inner classes, so you avoid having Foo$1, 

Foo$2, ... classes.  The compiler stores information about the method in the class, 

instead of creating a new class.  At runtime, that information (“recipe”) is used to 

construct an appropriate “method”, which is then invoked.  With the old way, the 

runtime must load a class, invoke a constructor, and then invoke the method. 

 Lambda functions don’t have to be anonymous.  Consider this snippet of code, 

similar to example (e) above: 

final Comparator<String> COMPARE_BY_LENGTH = 

   (s1,s2) -> s1.length() - s2.length(); 

Collections.sort( myList, COMPARE_BY_LENGTH ); 

Some example code that creates then uses a lambda: 

public class LambdaFun { 

    @FunctionalInterface 

    public static interface F { 

        public String get(); 

    } 

    public static void test(F f) { 

        System.out.println(f.get()); 

    } 



    public static void main(String[] args) { 

        test(() -> "one"); 

        test(() -> "two"); 

        test(() -> "three"); 

        F four = () -> "four"; 

        test(four); 

    } 

} 

Here we defined a new functional interface F that has a get method, which takes no 

arguments and returns a String.  However, Java already includes one: 

import java.util.function.Supplier; 

public class LambdaFun2 { 

    public static void test(Supplier<String> f) { 

        System.out.println(f.get()); 

    } 

    public static void main(String[] args) { 

        test(() -> "one"); 

        test(() -> "two"); 

        test(() -> "three"); 

        Supplier<String> four = () -> "four"; 

        test(four); 

    } 

} 

(The examples above were posted on comp.lang.java.programmer 24-06-2017 by Arne 

Vajhøj.) 

Method References 

Method references are just a notational short-cut for a lambda expression that 

simply invokes a single method.  That is, if one method does nothing more than pass its 

argument to another method like this: 

  btn.addActionListener( 

   ae -> { System.out.println( ae ); } ); 

You can simplify your code in Java 8 using a method reference, like so: 

  btn.addActionListener( System.out::println ); 

Both will display the ActionEvent object as a String to the console. 

See if you can work out what this code does (myArray is an array of Strings): 

  Arrays.sort( myArray, String::compareToIgnoreCase ); 

 


