
Lecture 17 - Graphic User Interfaces 

The AWT (Qu: What is it?  Ans: Abstract Windowing Toolkit) is a platform 

independent collection of classes the support GUIs (Qu: What is it? Ans: 

look and feel).  It works on any system (which is one reason why Java is so 

popular, since others such as C don’t have a GUI library, or are platform-

specific such as VB, or are a scripting language such as Perl/Tk), but the 

look and feel of windows and buttons can vary form system to system. 

There’s a nice series of videos explaining basic computer graphics on 

YouTube. 

There are many GUI toolkits available: Qt, TK, Gtk+, SWT, FLTK, ...) 

only some of which are portable. 

Among third party toolkits, SWT is developed and maintained by the 

Eclipse foundation and is thus well supported.  Gtk+ and Qt are 

popular for Unix and Linux systems, although Gtk+ hasn’t advanced 

as quickly as Qt and lags behind on features and portability.  Major 

commercial vendors had largely standardized around Gtk+ because its 

permissive licensing made it a less expensive choice for proprietary 

software vendors.  Qt was originally created by Trolltech, a 

commercial software vendor that offered the toolkit under a dual-

licensing model. 

After struggling for several years with the limitations of Gtk+, Nokia 

acquired Trolltech in 2008 with the aim of adopting Qt as the standard 

unifying development toolkit across its Symbian and Linux-based 

mobile platforms.  Nokia relicensed Qt under the LGPL in 2009, 

eliminating the commercial licensing barrier that had previously 

impeded broader adoption.  Companies that already use Qt for cross-

platform development include Google, Amazon, Skype, Adobe, 

Canonical (Ubuntu Linux), and others. 

The GUI code in Java has changed dramatically with each release: Java 1.0 

used a hierarchical method (based on containment / inheritance) to signal 

events (e.g., mouse click).  Java 1.1 uses a much better method that uses 

registration and call-backs, called the delegation model.  Java 1.2 (Java 2) 

uses this same stuff as Java 1.1, but replaced many parts of the AWT with 

newer, better pieces.  The new stuff is called swing.  (That’s not an acronym; 

the Java mascot is called “Duke” after Duke Ellington, a famous swing 

musician.) 

https://www.youtube.com/watch?v=Tfh0ytz8S0k


The basic idea is that GUI components are created and added to 

containers, which are also components.  In AWT when a GUI component 

such as a Button is created the JRE automatically creates a peer button 

object. 

A peer is a native GUI component: on Windows it is a Win32 button, 

on Macintosh it is a Macintosh button, etc.  (Show 

java.awt.Toolkit.createXXX(), point out you never use 

these directly.)  When the user clicks on the button on the screen with 

the mouse, the OS tells the JVM, which tells your Button object it 

was clicked on. 

Every different platform implements the JRE differently.  The use of peer 

objects is why windows and buttons look like other windows and buttons on 

that platform.  This is often a good thing! 

In addition to AWT and swing, Oracle is pushing (2012) JavaFX, a 

JRE designed for rich Internet applications, or RIAs.  JavaFX works 

more like CSS and HTML.  JavaFX may someday become more 

popular than swing. 

Heavyweight vs. Lightweight Components 

A “heavyweight” component is an opaque component that has a native 

peer.  It is like a sheet of paper (often called a canvas) you can draw on.  

The original AWT only had heavyweight components, but v1.1 added some 

lightweight ones (you can extend Component and Container).  Top-

level containers such as Frames must always be heavyweight. 

A “lightweight” component is a “virtual” component with no native peer 

(and thus no canvas) of its own.  The painted pixels of a lightweight 

component draw on the canvas of its “closest” heavyweight ancestor.  This 

can get confusing when heavyweight and lightweight components overlap 

each other! 

Lightweight components support transparency.  If a lightweight 

component leaves some of its associated bits unpainted, the underlying 

component will “show through”.   (Show HeavyLight.java.) 

Swing vs. AWT 

Swing doesn’t use peer objects.  Nearly every swing component is 

lightweight (Not JFrame).  (However swing components have a 

http://docs.oracle.com/javafx/2.0/overview/jfxpub-overview.htm


setOpaque() method to prevent transparency, simulating heavyweight 

components.) 

With swing, the programmer has complete control of the look (and feel) 

of buttons, windows, etc.  Your program will look exactly the same 

regardless of which platform it runs on.  Swing is more powerful and has 

many convenience methods and supports many effects not possible (at least 

not easily!) in AWT.  However this means a swing GUI may not match the 

rest of the user’s desktop. 

You can change the default look and feel (called “metal”) or even create 

your own custom look and feel with swing.  (Sun calls this Pluggable Look 

And Feel, or PLAF.)  To support this, swing includes an entire windowing 

system, which doubled the size of the previous JRE.  (Show 

IntCalc.java swing+PLAF.)  PLAF is discussed further, below 

(“Swing GUIs”). 

Swing has problems with multi-threaded programs, and is more 

complicated (to take advantage of the newer features, you must know 

model-view-controller).  Also, all event handling with either AWT or swing 

is done using AWT events. 

Whether to use AWT or swing (or some other GUI toolkit) is up to you.  

You create GUI programs in almost the same way no matter which you 

chose.  Most modern textbooks only show swing.  (This is unfortunate since 

swing is built on top of AWT and you must know AWT to use swing 

effectively.)  I will use AWT in class but will show swing too. 

Warning: Don’t mix swing and AWT components in the same 

application; stick to one or another toolkit.  (With Java 7, some 

mixing is possible.) 

Event-Driven programs 

All GUI toolkits have a main event loop, the AWT Event (handling) 

Thread: 

while ( true ) 

{   wait_for_event; 

     create_event_object evnt; 

    dispatch_to_proper_obj;  // obj.dispatch( evnt 

) 

} 

Component Dispatch: 

for ( each registered listener obj ) 



{   obj.method( evnt );  } 

Note this thread keeps applications running even after the main thread 

terminates. 

Demo simpleGUI.java window: 

class simpleGUI 

{  public static void main (String[] args) 

   {  Frame myWin = new Frame("My Window"); 

      myWin.setSize(300, 200); 

      myWin.setVisible( true );// or use show 

}  } 

Discus focus:  If the user clicks on a focusable Component a of an inactive 

Frame b, the following events will be dispatched and handled in order: 

   1. b will receive a WINDOW_ACTIVATED event. 

   2. Next, b will receive a WINDOW_GAINED_FOCUS event. 

   3. Finally, a will receive a FOCUS_GAINED event.  

If the user later clicks on a focusable Component c of another Frame d, 

the following events will be dispatched and handled in order: 

   1. a will receive a FOCUS_LOST event. 

   2. b will receive a WINDOW_LOST_FOCUS event. 

   3. b will receive a WINDOW_DEACTIVATED event. 

   4. d will receive a WINDOW_ACTIVATED event. 

   5. d will receive a WINDOW_GAINED_FOCUS event. 

   6. c will receive a FOCUS_GAINED event. 

Default keys to traverse forward to the next Component: 

TextAreas: CTRL-TAB on KEY_PRESSED 

All others: TAB on KEY_PRESSED and CTRL-TAB on 

KEY_PRESSED 

   Traverse backward to the previous Component: 

TextAreas: CTRL-SHIFT-TAB on KEY_PRESSED 

All others: SHIFT-TAB on KEY_PRESSED and CTRL-SHIFT-TAB 

on KEY_PRESSED 

Focus is more complex than this.  When you type a keystroke 

(shortcut key) to trigger an (say) a menu action, the current 

component won’t know about it.  There is a hierarchical event 

processing model, so on a keystroke event, the focused component, all 



its parent containers (in order), and then all visible and enabled 

components in the same window, are checked for a handler. 

Note clicking the close button in SimpleGUI1 does nothing.  Why?  

Discuss setVisible (for all components, including Windows, Frames, 

Panels, and Applets), Window.toFront (forces layout and brings to top if 

already visible).  Note methods toBack, 

Frame.setExtendedState(Frame.NORMAL|ICONIFIED). 

Note the easy window control in available in swing  (Show in Java docs.): 

JFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOS

E)   

Convert SimpleGUI3, 6 to swing: component →Jcomponent, Pre-Java5: 

add(X) →getContentPane().add(X).  Changed JLabel to JButton, note 

use of final local variable, add event handling to change JButton color 

(setBackground(..) ).  Show [J]Frame.pack(). 

Demo PopUp.java.  Discuss Mouse, MouseMotion, and MouseWheel 

events.  (MouseAdapter implements all three.)  Note a Window is a 

simplified Frame, or, more accurately, a Frame is a specialized Window.  

Point out that the system double-click interval is 200 milliseconds. 

Pages 485–487 in the book (7th ed) lists events and listeners.  (Show 

EventChart.htm).  Point out should know about all event types even the 

ones not covered in class.  Point out what generates ActionEvents and 

KeyEvents. 

Show sketcher.  (To discuss Mouse Events some more, paint and update, 

and insets.) 

MouseEvent handling since 1.4:  getModifiers() has problems telling 

the difference between say ALT and BUTTON3.  getModifiers() 

returns which buttons/modifiers changed (note the use of bit-wise operators 

and int masks).  To see exactly what buttons and modifiers are down at the 

time of the event, use: 

if((e.getModifiersEx()&e.BUTTON3_MASK)==e.BUTTON3_M

ASK) 

if ( e.getButton() == MouseEvent.BUTTON3 ) // New 

way 



Some systems (such as Linux) support multiple desktops.  On such systems, 

GUI elements may not appear on the currently showing desktop by default.  

On such systems, you can try code like this: 

JFrame f = new JFrame( 

  GraphicsEnvironment.getLocalGraphicsEnvironment() 

  

.getDefaultScreenDevice().getDefaultConfiguration() 

); 

JOptionPane.showMessageDialog(f, "Test"); 

f.dispose(); 

Menus 

Menus are MenuItems and contain other MenuItems.  (So you can add a 

Menu to a Menu.)  Menus are added to a Menubar, and a container can 

have a Menubar set for it.  A Frame is the only AWT container that 

supports a Menubar; swing allows any container to have Menus.  (Note in 

AWT, other containers such as Applets can have PopupMenus, usually 

triggered by a right-click.)  Selecting a MenuItem generates an 

ActionEvent.  So you need to add an ActionListener for each.  You 

can add a separator (horizontal line) with either Menu.addSeperator() 

or by adding a Menuitem of "-"). 

There are different types of MenuItems, such as checkbox, images, etc.  A 

MenuItem can have a mnemonic key defined (shows as underlined) used 

with ALT to activate.  You can also set an accelerator key (show 

MenuDemo). 

Rarely useful, you can use the older hierarchical event handling 

system to add a listener for action events on the menu itself, rather 

than on each menu item. 

More useful is the swing support for Action objects, which can be 

used from menus, buttons, or a toolbar. 

Painting Graphics  [From http://java.sun.com/products/jfc/tsc/articles/painting/] 

In AWT, there are two kinds of painting operations: system-triggered 

painting and application-triggered painting.  System-triggered painting 

occurs when a component is first made visible, is resized, or the 

component has changed its appearance.  For example something that was 

covering the component has moved and a previously obscured portion of the 

http://java.sun.com/products/jfc/tsc/articles/painting/


component has become exposed.  In this case a paint event is placed on the 

event queue, which eventually invokes the component’s paint() method. 

With an application-triggered painting operation, the component decides 

it needs to update its contents because its internal state has changed.  
(For example a button detects that a mouse button has been pressed and 

determines that it needs to paint a “depressed” button visual).  This can also 

be triggered by invoking the repaint method.  In this case a repaint event 

(this is a name I give to application-triggered paint events; this is not a 

standard term) is placed on the event queue, with consecutive repaint events 

collapsed into one.  This eventually invokes the component’s update 

method. 

The difference between paint and repaint events is that paint events 

call the paint() method directly; repaint events call update() 

which then calls paint().  Also multiple consecutive repaint events 

may be collapsed into a single event. 

The default update method for heavyweight components clears the 

component (with g.clearRect()) and then calls paint.  The update 

method of lightweight components simply invokes paint (no clearRect.)  

In some cases this can lead to flicker.  If you don’t want a heavyweight 

component cleared, you should override update() to simply invoke 

paint().  This is called incremental painting. 

Components that render complex output should invoke repaint() 

with arguments defining the rectangular region that requires updating.  

The rest of the component (outside this rectangle) is not affected by 

the call to update or paint, reducing flicker and improving rendering 

time.  A common mistake is to always invoke the no-arg version, 

which causes a repaint of the entire component, often resulting in 

unnecessary paint processing. 

Normally components don’t overlap much except for a container and its 

added components.  When the container needs to be refreshed (that is a 

system-triggered paint event occurs or the layout manager causes an 

application-triggered paint event), its paint method recursively triggers paint 

or repaint events on the affected components in that container. 

Things get more complicated when components overlap.  What happens 

depends on the type of component (heavyweight or lightweight) and the type 

of paint event (application or system triggered). 



Heavyweight components are easier to understand and work with.  When 

two or more heavyweight components overlap, they are drawn (or 

rendered) in a back-to-front order.  The last component added is under the 

previous ones (where they overlap).  (Show OverlapHeavy.java.)  Either 

paint or update method is invoked, depending on the type of paint event. 

Lightweight components are more complex.  Lightweight components can 

never cause system-triggered paint events since the “system” doesn’t even 

know about them.  So any paint events that come from lightweight 

components behave as application-triggered, even if it seems they were 

system-triggered.  This means update() is always called for lightweight 

components for any paint event.  For this reason the default implementation 

of update() will not clear the background if the component is lightweight. 

Another issue is that lightweight components aren’t “real”.  You can’t draw 

one by itself.  Lightweight components are always attached to the top-

most heavyweight component.  As each heavyweight component is drawn, 

the lightweight ones on top of it are drawn next.  

When a lightweight component is the source of a paint event, the underlying 

heavyweight component’s paint method is called. That in turn must call 

super.paint to invoke the lightweight components’ paint methods.  

(The default Container.paint() method handles this, so if you 

override that be sure to invoke super.paint() or lightweight 

components won’t get redrawn!)  (Show PaintDemo; comment out the 

super.paint call, move it to the top of paint.) 

Painting in Swing 

Swing components have multiple parts to them called panes, especially 

containers.  They may have borders, a content pane (that may have multiple 

layers to support fancy graphic and animation effects), and children 

components.  They are nearly all lightweight components which further 

complicates painting.  A swing component’s paint method has a lot of 

work to do!  If you override paint() be sure to invoke 

super.paint()! 

Mostly in swing you don’t need or want to repaint the whole component, 

just the content pane (or you could cause flicker).  So swing components 

have a paintComponent method you use like you use paint in AWT.  

(With lightweight components in content panes (almost always the case with 

swing) you still need to call super.paintComponent().)  Note that 



JFrames are still heavyweight components in swing so you use paint 

for them as normal. 

Discuss mixing of adding components and overriding paint or 

paintComponent (must invoke super.paint to have added 

components show).  If super.paint is first, then later g.drawXXX() 

output will appear on top of lightweight components (“DEMO VERSION”); 

if last then components on top (e.g., wallpaper effect). 

Swing containers have a special glass pane that covers the whole container; 

You can draw (lightweight) on that to cover a (part of a) window, with a 

splash screen for instance. 

In a multi-screen environment, the class 

java.awt.GraphicsConfiguration can be used to render 

components on multiple screens.  It has methods to list all screens and 

printers available. 

 

A note about using colors:  We have already covered the 

java.awt.Color class, but you should also know about 

SystemColor class.  This class defines Color constants for the 

system UI: the current color for windows, titlebars, menus, etc. 

Fonts 

Discuss font f = new Font("SansSerif", Font.BOLD, 18) 

public Font(String name, int style, int size) 

Creates a new Font from the specified name, style and point size. 

name - The font name.  This can be a logical font name or a font face 

(physical font) name.  (Demo UnicodeSymbols.java to show how to list 

available fonts: java.awt.GraphicEnvironment.) 

Discuss proportional versus monospaced fonts, serif versus sans serif fonts.  

(Demo Times, Arial, and Courier using “Now is the time 1 2 3” in 24 

point, in Notepad.) 

A logical name must be one of these: 

 Serif 

 SansSerif 

 Monospaced 

 Dialog 



 DialogInput 

 Symbol 

The mapping from logical to physical font names is complex; each logical 

fonts is actually comprised of several physical fonts “stitched together”.  

This allows more Unicode code points to be available than are supported in 

any one physical font.  The mapping is defined in 

.../jre/lib/fontconfig.properties.src. 

You can count on “Lucida” font family present as part of JRE, since 1.2.  

(Show ...\jre\lib\fonts.) 

You can also download and convert TrueType, OpenType, and 

PostScript type 1 fonts, into Java Font objects you can use: 

InputStream fStream = new 

URL("...").openStream(); 

Font f = Font.createFont(Font.TRUETYPE, 

fStream); 

f = f.deriveFont(Font.BOLD, 12F); 

fStream.close(); 

style -  The style constant for the Font.  The style argument is an integer 

bitmask that may be PLAIN, or a bitwise union of BOLD and/or ITALIC 

(for example, ITALIC or BOLD|ITALIC).  Can also use 

“BOLD+ITALICS”.  Any other bits set in the style parameter are ignored.  

If the style argument does not conform to one of the expected integer 

bitmasks then the style is set to PLAIN. 

Note a missing italics version style of some font will get rendered as a 

slanted version of the plain or bold fonts. 

size -  The point size of the Font.  (Discuss the difference between points 

(~1/72 in.; 1 point = .013837 in. so 72 pt. = 0.996264 in.), picas (12 points = 

1 pica), and pixels (Originally same as a point, but on modern screens may 

have many more pixels to the inch.) 

Since bit-mapped fonts are actually a collection of graphics, they will shrink 

if you use a higher resolution (more dpi).  In theory, true-type and similar 

fonts will scale appropriately but in practice many systems report to the JRE 

an incorrect (or no) dpi value, and will render such fonts as if 1 pixel = 1 

point, the same as for bit-mapped fonts.  In general you should use logical 

fonts (and variants). 



[ Adv: typography terms: leading: space between elements;  

X-height: typical or average height of non-capital letters (different fonts 

with the same point size but different X-heights will appear as different 

sizes); baseline: the bottom edge of a line of text (descenders go below that, 

e.g., “y”). 

 

em (horizontal measure equal to the point size, which is the width of a 
capital ‘M’); en (the width of ‘N’); dashes (em, en, hyphen, minus); 
ligatures (“fi” = , “fl” = , etc.) 

] 

Discuss FontMetrics.  Discuss “stringWidth” method to align columns. 

[ Adv.  Show Tempconv2.java.  (If you need more accuracy, use a 

LineMetrics object instead.)  You can also get (and the draw if you 

want) the bounding box for a string of text s, from a Font f, and a 

Graphics2D g2: 

FontRenderContext frc = 
g2.getFontRenderContext(); 
Rectangle2D bounds = f.getStringBounds( s, frc ); 
int width = (int)Math.round(bounds.getWidth()); 
LineMetrics lm = f.getLineMetrics( s, frc ); 

See Font Concepts web resource for more background information (not on 

exam). 

] 

Remind students the exam covers window, mouse, menu and button 

(Action), and key events, (you should know which listener is used for 

each, but only details for action events), and the components: Frames, 

Panels, Buttons, Labels, Menus, TextFields, and TextAreas.  Be 

generally familiar with Fonts (including logical font names), and the Flow-, 

Border-, and Grid- Layout Managers. 

Swing GUIs 

Swing is a sophisticated GUI toolkit, built on top of the AWT toolkit but 

with many extra features and abilities.  However the power of swing comes 

           d o g 

           c a t 

ascent 

decent 

leading 

baseline 

baseline 

height 



at a price: it is much more complex to use (model-view-controller or MVC 

paradigm, actually in swing more of a document-user interface or M-UI 

paradigm).  When the user interacts with the UI, your code catches the 

events and updates the document. 

Working with swing’s PLAF is easy, at least in Java 6 and newer.  To make 

swing use the native system’s look and feel, add this to the top of your 

program: 

   try { 

     UIManager.setLookAndFeel( 

       UIManager.getSystemLookAndFeelClassName()); 

   } catch ( Exception e) {} 

You can view the Java docs for the javax.swing.UIManager class to 

see additional methods exists for discovering which UI (user interfaces) are 

available on your system. 

The PLAFs available vary by vendor.  Oracle has added a nifty new one in 

Java 7 called nimbus.  Unlike most PLAFs, nimbus uses vector graphics, so 

it should look smooth at any resolution.  A third-party PLAF called napkin 

shows the UI with a “hand-drawn” look.  That could be useful to show 

clients a prototype UI. 

Swing is not thread-safe the way AWT is.  This means that if you update 

the GUI from multiple threads, the result may not look right (or even work at 

all).  Of course most of the time it works fine, but why take needless risks? 

The correct way to update a swing GUI is to run the code from the 

AWT Event Handling Thread (a.k.a. the Event Dispatch Thread, or 

EDT).  This can be done immediately with 

SwingUtilities.invokeAndWait, or just added to the event queue 

with SwingUtilities.invokeLater.  (Show swing image demo, 

Smile3.java.): 

SwingUtilities.invokeAndWait( new Runnable() 

   {  public void run () {  createGUI();  } 

   } ); 

 (Since Java 1.3, these two methods just invoke the similarly named methods 

from java.awt.EventQueue.  You can use that directly if you wish.) 

A consideration (applies to any GUI toolkit) is that if you need to create a 

complex GUI, say a custom animation by downloading images, you will 

have a “stalled” program if this is done from the main Thread.  But if you 

http://docs.oracle.com/javase/tutorial/uiswing/lookandfeel/nimbus.html
http://napkinlaf.sourceforge.net/


do this from the EDT, the GUI will appear unresponsive.  Using 

SwingUtilities doesn’t help here; you need to use a background thread 

(“worker” thread) to deal with time-consuming GUI tasks.  And that thread 

must still be careful to update the GUI only from the EDT. 

The JOptionPane.showXXX methods and some of the 

JXXXChooser.showXXX (e.g. JFileChooser) methods 

apparently don’t need to be invoked on the EDT.  Some Swing 

components (and some of their methods) are marked “thread-safe” in 

the docs; those can be invoked from any thread. 

A utility class called SwingWorker has been used to make it simpler to do 

this.  It has many features and methods.  See the Java docs for examples and 

more information (also the uiswing/concurrency section of the on-line Java 

tutorial). 

To make a custom component in swing, extend JComponent and 

override its paintComponent method; often that starts or ends with a 

call to super.paint.Component.  You can also extend JPanel, but 

that is opaque by default, so you must call super.paintComponent 

first, to draw the proper background. 

Since JFrames have convenient methods to add stuff to the content 

pane, it is easy to forget about it and run into trouble.  To set the 

background color in swing, you can use: 

  getContentPane().setBackground( Color.GREEN ) 

SWT and JFace (Eclipse GUI Toolkit) 

Standard Widget Toolkit is what the AWT should have evolved into.  SWT 

provides a low-level API (like AWT) of GUI components called widgets.  

(X Window calls them this too; MS calls them controls.) 

SWT uses a more complete API than AWT and supports a “superset” of the 

functionality of the various platforms.  When possible a native 

implementation is used, and missing features are emulated.  The result is a 

rich, high performance GUI API that provides a native look-and-feel. 

JFaces is a higher-level API, implemented on top of SWT.  It provides an 

easy to use, high-level of abstraction API and provides higher-level 

widgets such as trees, tables, etc. 

SWT also uses a different event model than AWT (or swing). 

http://download.oracle.com/javase/tutorial/uiswing/concurrency/


SWT and JFaces are used to produce Eclipse.  You can download the jar(s) 

for this, add them to the extensions (“ext”) directory, and start using this 

GUI system instead of AWT or swing. 

New AWT features in Java 7 

Class Window has a new method public void 

setOpacity(float opacity), where opacity is between 0.0 (fully 

transparent) and 1.0 (fully opaque).  You can also use the alpha channel of a 

background color for this. 

New methods to position components, e.g., 

Window.setLocationRelativeTo.  (With an argument of null, this 

will center the window on the screen.) 

Windows don’t have to be rectangular anymore.  Use 

Window.setShape(Shape shape). 



Lecture 18 — Layouts 

Containers (which extend Component) support Layout Managers.  These 

allow components in a window to adjust automatically if the window is 

resized, or if additional components are dynamically added to the window.  

The developer (you) can easily center components without pre-calculating 

their positions.  Components can also be automatically resized.  Some (not 

all) layout managers ask a component about its preferred size or its 

minimum size, and stretch or shrink the component as needed.  (In AWT, 

you must extend a class to override these; in swing, there are set methods 

you can use.) 

When creating custom components you should provide 

getPreferredSize and getMinimumSize methods for the 

layout manager to use. 

If you don’t want all this, you can turn off the layout manager then position 

and size all components yourself manually: 

 setLayout( null ); 

Use setSize, setLocation, or setBounds to size and position the 

added components (defaults to 0 width, 0 height at point 0,0).  Note that 

each container requires its own layout manager object, even if two 

containers are using the same type of layout. 

If using a layout manager than manually setting size or location will have no 

effect.  Also when a component is added, removed, or changed, it is 

invalidated.  A Container has a method validate (swing revalidate) to re-

layout and re-paint components if needed. 

BorderLayout (default for Frames)  BorderLayout(hGap, vGap) or () 

(Example:  setLayout( new BorderLayout() ); ) 

This is my favorite of the basic layout managers.  The constraint when 

adding a component to a container with BorderLayout is “East”, “West”, 

“North”, or “South”, or BorderLayout.EAST, etc. A 

container that uses a BorderLayout is subdivided into five areas as 

shown: 

Each area should contain only a single component; however that 

component could be a Panel.  The components in the North and 

South are drawn first and with their preferred height, but are stretched 

horizontally the full width of the container.  Next the East and West 

           N 

 

W       C         E 

 

           S 



components are drawn, with their preferred width but are stretched vertically 

to fit between the North and South components.  Finally, the component in 

the Center is drawn, and it is stretched (or shrunk) to fill any remaining 

space.  Note it is quite possible that the height or width of the Center is zero, 

and the component drawn there may not show up! 

FlowLayout (default for Panels) 

new FlowLayout(align, hGap, vGap) or (align) or () 

align is one of FlowLayout.RIGHT, .LEFT, or .CENTER.  Default gap 

is 5 pixels between components.  With FlowLayout, components are 

added in rows starting at the top, from left to right.  When attempting to add 

a component at the end of a row that won’t fit, the layout manager starts a 

new row.  Using FlowLayout components are always drawn with their 

preferred sizes.  (The only layout manger where this is true.) 

Aside:  To achieve a visual effect, it is often necessary to use Panels, a container 

used to group and align other components.  For example, adding a Button 

to a container with BorderLayout will stretch the Button.  However, you 

can add a Button to a Panel (with FlowLayout), then add that Panel 

to the container with BorderLayout.  The (invisible) Panel will stretch, 

but the Button will be drawn at its preferred size.  To align many 

components, it is sometimes necessary to have Panels within Panels 

(within Panels).  Sometimes it is easier to turn off the Layout Manager 

altogether, and position and size components manually.  Note Java contains 

more sophisticated layout managers then the ones we cover in this course, 

and you can create a custom layout manager. 

Best Way To Layout 

Learning how to layout components is really a matter of practice.  There is 

no one “right answer” on how to position components.  The best approach is 

probably to draw rough sketches of what the screen(s) should look like.  Try 

several different layouts and pick the most pleasing (and functional). 

Even with a specific appearance in mind there is no one best way to actually 

achieve that.  You can achieve very similar appearances using Boxes, 

BorderLayout, or other layout managers, and then Panels within 

Panels. 

In-class program:  Scientific Personality quiz.  Show solution, and development 

solution where every Panel has a different Color. 



GridLayout (rows, cols)  or  (rows, cols, hGap, vGap) 

Either rows or cols may be zero; the layout manager will calculate the 

missing value from the other and the number of components added.  The 

container’s area is divided into a grid of identically sized cells.  Components 

added to the container fill the grid from top to bottom, left to right.  Show 

Tic-Tac-Toe. 

GridBag 

This is the single most powerful layout manager, and it is available in Java 

1.1.  However it is very complex and won’t be discussed in detail in this 

course.  A container with GridBag layout is divided into cells laid out into 

rows and columns, like graph paper.  When adding any Component, you 

specify which cells the component will use and where within that block the 

component is to be drawn.  There are so many parameters to set that you 

must use a helper object, called a GridBagConstraint.  First you set 

the fields in the GidBagConstraint object, than add the component 

using that object.  

The model solution for Project 3 (TxtCrypt.java) uses a GridBag 

layout manager, so don’t try to reproduce this layout exactly. 

CardLayout  (Legacy layout manager for AWT; use JTabbedPanel instead) 

With this layout manager, each component added is drawn the full size of 

the container.  Only one component is visible at a time however.  The 

CardLayout layout manager object has methods to allow you to show the 

first, last, previous, or next component.  When adding components, you can 

use a name for the constraint.  Then you can show a specific component by 

requesting the layout manager show that component. 

Unlike other layout managers, this layout manger requires your code to 

invoke methods on it later, so the correct way to use it is: 

CardLayout cl = new CardLayout(); 

setLayout( cl ); 

... 

cl.next(); 

Box   (Part of Swing) 

This is a very useful layout manager!  It lays out components in a single row 

or column.  Actually, Box is a container that uses the 

BoxLayoutManager).  You can specify how adjacent components are to 



be spaced.  To easily create complex layout effects, you can create Boxes of 

Boxes.  (Imagine two row Boxes of components, added to a column Box.) 

SpringLayout (Part of Swing) 

A very flexible layout manager, designed to be used by GUI tools such as 

NetBeans.  It would be very difficult to use directly (but not impossible). 

GroupLayout (Part of Swing) 

Like SpringLayout, GroupLayout was designed for use by GUI builder 

tools.  However it is much simpler to use by humans and can be very 

powerful too.  This layout supports complex hierarchical (nested) panes. 

Other Components 

Add a Label.  (Show UIDemo.  Show DrawIt.) 

Note swing JLables can be text, icons (images), or both.  All Frames and 

Windows are Containers, which are specialized Components that 

contain other Components.  In addition to Frames, Windows, and 

DialogWindows, other containers are Panels.  All container components 

support a method add(component) and add(component, 

constraint) to associate a component with a container.  (Note some 

book examples show this the other way around.)  Adding a Component to 

a Container is the only way to visually show a Component.  In some 

cases all the Components in a Container are treated as a group.  For 

example, if a Container becomes invisible, all its Components also 

become invisible. 

Next add a TextField.  Show API and inheritance again.  Note that 

TextFields and TextAreas inherit from TextComponent.  Add a 

TextArea. 

Add a Menubar and a Menu.  Note only Frames can have menus in AWT.  

This is fixed in swing (any container may have a Menubar). 

A Canvas can be extended to create a custom heavyweight component.  In 

your custom component you override methods such as paint and 

getPreferredSize and can even handle events internally. 

Show $JAVA_HOME/demo/applets.html (especially 

swingSet*). 
 

http://download.oracle.com/javase/tutorial/uiswing/layout/spring.html
http://download.oracle.com/javase/tutorial/uiswing/layout/group.html

