
Lecture 18 — Date and Time in Java

Time and date APIs seem to have been a last-minute addition to Java 1; they were not

well-designed and seem to mimic the Unix time C library from 1970. Java 8 finally

replaced the old API, but many years of code use the original APIs so you need to know

these as well. Let’s start with the old API (in java.util).

Old (pre Java 8) API: Date, Calendar, and DateTimeFormatter

These classes share the following relationships:

Objects of the Date class in the Java.util package (Calendar is in that package

too) can be used to represent specific instant in time, with millisecond precision (take that

with a grain of salt!), and has methods to convert and compare Dates.

Date now = new Date(); // The current date/time

new Date(long); // Date constructor

The second form constructs a Date from a timestamp, which is a long representing the

number of milliseconds since Midnight 1/1/1970 GMT. (See also

“System.currentTimeMillis()”.) Displaying a Date as a string

(“System.out.println(now);”) shows the date in the local time zone if possible.

(Note 1 second equals 1,000 milliseconds.)

Unix-based systems stored time as the number of seconds, in a 32-bit int. That

will overflow in 2038 (Monday, January 18 at 10:14:07 PM EST). Like the

“Y2K” problem, this one is the Y2K38 problem. It will affect older hardware

(such as some bank mainframes and GPS satellites).

Although Java uses a long and not an int to store timestamps, the Date class

uses System.currentTimeMillis which is platform-dependent; On a 32-

bit (virtual) machine the problem still exists for Java. Additionally, many system

clocks only update the time to the nearest 10 or so milliseconds.

You can time events (in milliseconds) by subtracting two Date timestamps:

https://en.wikipedia.org/wiki/Year_2038_problem

long duration = end.getTime() – start.getTime();

However, that may not be very (or at all) accurate for durations of less than several

seconds. See also System.nanoTime(), the best way to time durations. (Note 1

second equals 1,000,000,000 (a billion) nanoseconds.)

The timestamp returned by System.nanoTime is just a long that starts

counting from some arbitrary point in time. You cannot use this to determine the

real “wall-clock” time. The starting point is set by the JVM when it starts and can

vary between JVMs.

System.nanoTime is useful for timing durations within a single running JVM.

Don’t use System.currentTimeMillis for that, as it is the best

approximation to “wall-clock” time (and known as the “real time clock”) and can

leap forward or backward by tens of milliseconds. (Technically speaking,

System.nanoTime is a monotonic clock and

System.currentTimeMillis is not. The Date class is based on the

latter.)

When timing or comparing timestamps between JVMs (and between networked

computers in general), the best you can currently use is the “real time clock”

(Date or System.currentTimeMillis). Don’t expect that to have

accuracy better than (many) tens of milliseconds.

While not subject to the Y2K38 problem, Both

System.currentTimeMillis and System.nanoTime use the

resolution of the system’s underlying clock. (The precision is accurate to a

nanosecond but the clock may report the same value without updating (resolution)

for the same tens of milliseconds as for currentTimeMillis.)

The Date class doesn’t contain any methods to fetch the parts of a date, such as the year

or day or month. Instead these tasks are given to a Calendar class. This is an abstract

class, to support many different calendaring systems. However, in most of the world (the

part that uses computers anyway) the calendar system used is Gregorian, and there is a

GregorianCalendar concrete (that is, not abstract) class.

 “Prior to JDK 1.1, the class Date had additional functions. It allowed the

interpretation of dates as year, month, day, hour, minute, and second values. It

also allowed the formatting and parsing of date strings. Unfortunately, the API

for these functions was not amenable to internationalization. As of JDK 1.1, the

Calendar class should be used to convert between dates and time fields and the

DateFormat class (in the java.text package) should be used to format and

parse date strings. The corresponding methods in Date are deprecated.”

Java since version 8 includes a much better set of classes for dates, times, and

intervals, based on the open source Joda time project. (See JSR-310, “Date and

Time API”.)

“Although the class Date is intended to reflect Coordinated Universal Time (UTC), it

may not do so exactly, depending on the host environment of the JVM.”

http://joda-time.sourceforge.net/

In all methods of class Date (and Calendar; most Date methods are deprecated!)

that accept or return year, month, date, hours, minutes, and seconds values, the following

representations are used (documented only in Date, not Calendar):

• A year y is represented by the integer y – 1900 (not in Calendar).

• A month is represented by an integer form 0 to 11; 0 is January, 1 is February, and so

forth; thus 11 is December. (True for Calendar too.)

• A date (day of month) is represented by an integer from 1 to 31.

• An hour is represented by an integer from 0 to 23. Thus, the hour from midnight to 1

a.m. is hour 0, and the hour from noon to 1 p.m. is hour 12.

• A minute is represented by an integer from 0 to 59 in the usual manner.

• A second is represented by an integer from 0 to 61; the values 60 and 61 occur only

for leap seconds and even then only in Java implementations that actually track leap

seconds correctly. Because of the manner in which leap seconds are currently

introduced, it is extremely unlikely that two leap seconds will occur in the same

minute, but this specification follows the date and time conventions for ISO C.

In all cases, arguments given to methods for these purposes need not fall within the

indicated ranges; for example, a date may be specified as January 32 and is interpreted as

meaning February 1.

To format a date for the current Locale, use one of the static factory methods

(formatting classes are in the java.text package):

 myString=DateFormat.getDateInstance().format(myDate);

 myString=DateFormat.getDateInstance(style).format(myDate);

You can use a DateFormat to parse also:

 DateFormat df = ...;

 myDate = df.parse(myString);

Use getDateInstance to get the normal date format for that country. Other static

factory methods: getTimeInstance to get the time format for that country, and

getDateTimeInstance to get a date and time format. You can pass in different

options to these factory methods to control the length of the result; SHORT, MEDIUM,

LONG, or FULL. The result depends on the locale, but generally:

SHORT is completely numeric, such as 12.13.52 or 3:30 PM

MEDIUM is longer, such as Jan 12, 1952

LONG is longer, such as January 12, 1952 or 3:30:32 PM

FULL is pretty completely specified, such as

 Tuesday, April 12, 1952 AD or 3:30:42 PM PST.

Note: Don’t confuse these classes with those in java.sql package!

java.util.SimpleDateFormat class allows you to specify an arbitrary pattern

for formatting dates. A number of formats are used, such as for email (RFC-5322), and

most other uses such as log files (ISO-8601, and the related RFC-3339 used for HTTP

dates). Here’s how you can format a Date as an RFC-5322 (standard date format,

formally known as RFC-822) string:

SimpleDateFormat fmt = new SimpleDateFormat(

 "EEE, dd MMM yyyy HH:mm:ss Z (zzz)");

System.out.print(fmt.format(new Date()));

(Show DateTime.java, CalendarDemo.java.)

java.time — New API since Java 8

The old Calendar and Date classes suffer from many short-comings. They fail to use the

international standard for working with dates and times, ISO-8601 (see also this ISO-

8601 notation summary). They don’t use standard Unicode Common Locale Data

Repository (Unicode CLDR) for locale data. They don’t use the standard time zone

database (iana.org TZDB). The old API didn’t have units of time, durations, etc. The

Date class was mutable. The new API handles all that and more.

The new API has a large number of classes, in five packages. But don’t let that convince

you it is more complex than the old classes; it isn’t. The most used packages are

• java.time — contains the most used classes.

• java.time.format — contains the formatting and parsing classes.

• java.time.temporal — classes to convert dates and times, and to make

adjustments to them (such as adding 30 days to today).

The other two packages are java.time.chrono (used for non-standard calendars)

and java.time.zone (contains classes for defining time zone rules).

All the classes in these packages are immutable, so there are no “set” methods in any

class. They do use a common method naming scheme, to make working with so many

classes and methods easier. See the chart on the Java Tutorial’s Method Naming

Conventions page. Most of these method prefixes are obvious: “of” creates new objects

from its arguments, which are validated. The “from” methods create new objects by

converting from other objects (a ZonedDate from a LocalDate, etc.) (Note such

methods may need to “fake” missing data, or drop extra data, for example when

converting LocalDateTime to/from LocalDate). Some examples:

 LocalDate date = LocalDate.of(2015, Month.JULY, 4);

 LocalDateTime dt = LocalDateTime.from(Instant.now());

 LocalDateTime dt = LocalDateTime.now();

The “to” methods convert to other types (similar to “from”), “get” methods returns a

part of a date-time object, “parse” and “format” methods convert from/to Strings,

“is” methods query an object (example “isLeapYear”), and “plus” and “minus”

methods add/subtract time. (In addition to the format methods of these classes, you

can use String.format to convert date and time objects into Strings.)

The two method names (prefixes really) that weren’t obvious to me were “with”

methods (returns a new object with one part changed) and “at” methods, which combine

date/time objects together. (Show API of some classes.)

https://en.wikipedia.org/wiki/ISO_8601
http://www.cl.cam.ac.uk/~mgk25/iso-time.html
http://www.cl.cam.ac.uk/~mgk25/iso-time.html
https://www.iana.org/time-zones
http://docs.oracle.com/javase/tutorial/datetime/overview/naming.html
http://docs.oracle.com/javase/tutorial/datetime/overview/naming.html

The most common classes include

• LocalDate — Objects represent a date, but without any time or time zone. (There

are also classes to represent years, months, days of months, etc.)

• LocalTime — Objects represent time, but without any date or time zone data.

• LocalDateTime — Obvious. Since most applications use a single (local) time

zone in the application, these three classes are the most commonly used.

• ZoneId — Objects represent time zones, and have methods to convert UTC time

to/from local time.

• ZonedDateTime — In essence, a combination of LocalDateTime and

ZoneID. Use when you need to mix dates and times from different time zones, or to

allow users to select a zone other than the local zone (useful for web applications,

where the server is often in a different time zone from the clients).

• Instant — Similar to the old Date class, objects represent a specific nanosecond

in time, using Midnight, January 1st 1970 GMT (UTC) as the zero point. Unlike the

Date class (and the System.currentTimeMillis method), All Instants are

monotonic since 1972. Whenever you need to work with timestamps or durations,

use this class. An example:
 Instant later = Instant.now().plusHours(1);

Monotonic clocks never are adjusted backwards. Instead they lengthen or

shorten seconds (and milliseconds) until the clock catches up.

For very accurate timing of durations, a non-standard clock must be used. In

the future, it is expected that more OS versions and computer hardware will

provide such a clock.

For now, be aware that time is an unsolved problem when using multiple

JVMs (each has their own notion of time) and of network time in general.

Clocks used from inside running virtual machines may appear to leap ahead

when the VM is paused, which happens frequently.

Only use monotonic clocks for timing durations, and even then, be aware the

time may leap forward by tens of milliseconds or may adjust timestamps by

±0.1% (to make the clock better match Solar time).

For timing between JVMs (especially across a network), the best you can do is

the “real time” clock that is not monotonic, and don’t expect an accuracy

better than many tens of milliseconds.

• DateTimeFormatter — Provides standard format and parse methods for the new

date and time classes. In addition, the old formatting methods (including printf)

work on the new objects as well:

 System.out.printf("%tl:%1$tM %1$Tp%n",

 LocalDateTime.now()); // Output: 3:06 PM

• TemporalAdjuster — Provides numerous static methods to use with the various

“with” methods of the other classes. Some examples (assume appropriate static

imports):

LocalDate date = LocalDate.now();

LocalDate first = date.with(firstDayOfMonth());

LocalDate monday = date.with(firstInMonth(MONDAY));

(“MONDAY” is a constant of the class DayOfWeek.) You can also create custom

adjusters.

• Duration — Used most often with the Instant class, specifies a number of

nanoseconds. You can use these with plus and minus methods. Note, the duration

is independent of time zones or other calendar changes.

• Period — Similar to Duration but uses days, months, and years to represent the

duration of time; adding a day takes into account (for example) daylight savings time

switches.

See the Java Tutorial Date Time Trail for more information, as well as the Java docs for

the API. (Show JavaTimeDemo.)

http://docs.oracle.com/javase/tutorial/datetime/overview/

