
 Unix/Linux Networking (CTS 2321) Lecture Notes of Wayne Pollock

Confidential Page 1 10/3/2011

Lecture 8 — Port numbers and Sockets

Sending a packet to a host isn’t enough. When the destination host gets the packet, what program

should it send it to? (Web server? Email server? Telnet?) Part of the layer 4 header includes a port

number to identify which program should receive the packet and which one sent the packet. These are

16 bit values. (Example: a web browser with two windows open. You click a line on one, switch to the

other and click a different link. Each browser window’s HTTP request packet will use a different source

port number so the replies will be sent to the correct window.)

When a host receives a packet, the kernel will check the port number to see which process to send it to.

So how does a client (say a web browser) know which port number corresponds to a server? The

servers listen for a particular port number that all agree on (IANA).

The standard servers use well known Port numbers in the range 0-1023. Which service (and its

application level protocol) uses which port number is documented in the /etc/services file. (This

is not a configuration file!) There is a similar file /etc/protocols with human-readable names

for the various protocol numbers.

Well-known ports are reserved for public services. Many certification exams (and employers) expect

you to memorize a number of these, such as:

FTP (20 for data and 21 for control), ssh (22), telnet (23), SMTP (25), DNS (53), BOOTP/DHCP (67 for

server, 68 for client), HTTP (80), POP (110), portmap (111), NNTP (119, used for Netnews), NTP

(123), NetBIOS (139), IMAP (143), SNMP (161), and HTTPS (443), IPP (631), IMAPS (993), POPS

(995). Use grep on /etc/services to lookup port numbers quickly.

Using specific ports for specific services makes it easy for clients; to contact your (web) server; the

client will send the request packet to your IP address and destination port 80.

Note that on a Unix system root-privileges are needed to listen in on a well-known Port. (This prevents

a user from crashing your web server and then starting their own, fooling people who visit your web

site!)

The range 1024-49151 is for User (Registered) Ports, used for other public services (such as Unix

rlogin or the w3c SSL services). These are used because today there are well over 1023 application

protocols registered. These are also registered by IANA (as a public service.)

The Dynamic and/or Private Ports are those from 49152 through 65535. Clients will use any

available port number higher than 1024; the kernel keeps track of which are in use. (Note: you can use a

telnet application to connect to any port: debugging.)

Sockets

A socket represents a single network connection endpoint between two applications. These two

applications normally run on different computers, but sockets can also be used for interprocess

communication (IPC) on a single computer. Sockets are bidirectional, meaning that either application

can both send and receive data.

A socket is the combination of an IP address, type, and port number. A pair of sockets will

uniquely identify a network connection from a client application on one host to a server application on

another host. (The kernel keeps track of open sockets in a table. When an application creates a new

socket, the kernel returns a socket number for the application to use with read/recv and write/send calls.)

Programmers often use different types of sockets in network programming. Stream sockets implement

connection-oriented semantics (and use TCP). Datagram sockets offer connection-less semantics (and

 Unix/Linux Networking (CTS 2321) Lecture Notes of Wayne Pollock

Confidential Page 2 10/3/2011

use UDP). A raw socket just uses IP only; the applications must implement the transport layer. There

are other types too.

The socket model is so easy to use that lots of different types of sockets exist. For example a

“netlink” socket is used by applications to send or receive messages to/from the Linux kernel

(used by udev for instance).

Example pseudo-code of client using TCP/IP socket to connect to server:

sock = create_socket(PF_INET, SOCK_STREAM);

sock.connect(dest_addr, dest_port);

if (sock.is_connected()) {

 sock.send(request_data);

 sock.recv(response_data);

}

sock.close();

inetd Many servers are not started at boot time (ftp) although some are (httpd). (Q: Why?). Instead a “super-

server” known as inetd (or xinetd on modern Linux systems) is started at boot time that listens for

incoming packets with a variety of port numbers. Inetd then checks its configuration file to determine

which server should get that packet, starts the server, and hands off the packet to it. Such network servers

are often referred to as network daemons. Most spawn child processes for each incoming request. This

important service is configured either by editing a file /etc/inetd.conf or editing files in a directory

/etc/xinetd.d.

fuser port/protocol (ex: fuser ssh/tcp or fuser 22/tcp). lsof too (e.g., lsof –

i | grep LISTEN) (-v for outgoing connections)

To monitor overall network activity use netstat, ping, nc, traceroute, nmap [-p- to

scan all ports], and especially (if available) lsof: -i (open network connections and the

processes/programs that have them), +M (portmapper data), -n (don’t translate addresses), -P

(don’t translate port numbers), -N (show NFS files).

Shows what program is listening on what port:

netstat -A inet -pea # Show all connections, like lsof

netstat -tulep # Show LISTENING (services) only

Question: If a host has several NICs, when sending an outgoing packet what is the source IP used and

which NIC is used?

Answer: If the outgoing packet is a reply to a previously received packet, then the source IP is the

original destination IP, and the NIC the received packet came from is used to send the reply.

For outgoing packets that aren’t a response, there is no standard answer. However most Unix/Linux

systems will use the IP address of the 1st NIC detected during boot-up (for Linux that would be the IP of

eth0). (IPv6 is more complicated, as each NIC may have many addresses associated with it.)

RPC

Sun developed a different scheme for connecting a server to a port number. Instead of using a well-

known port number for each service, a single well-known port number (111) is used for the program

portmapper (or portmap or rpcbind). This program assigns each RPC service a unique port

number. An RPC service can either request a dynamic port number assignment or tell portmap what

port number to use.

 Unix/Linux Networking (CTS 2321) Lecture Notes of Wayne Pollock

Confidential Page 3 10/3/2011

Each service is identified by a unique RPC program number. These are listed in /etc/rpc (format:

service-name program-number [aliases]). Each service also has a version number so it is possible to run

multiple versions of the same service. Finally, each service binds one or more functions (a.k.a.

procedures or methods) with procedure numbers.

A remote RPC client can query the portmap daemon with a program number, a version number, and a

transport protocol (e.g., TCP or UDP). It receives a port number for that service, plus a list of

procedures and their numbers.

Historically RPC has had many security problems. With dynamic port number assignment it is

difficult to open firewall holes for just the services your host provides. You should configure

services to use static port number assignments if possible and limit the firewall holes needed. RPC

should be turned off completely on your server unless you are using RPC dependent services. These

include NFS and rlogin.

rpcinfo is a utility that reports which RPC ports are currently assigned (using “-p”) and can be used

to examine, test, and debug RPC services such as NFS or samba. See the man page for more info.

