
Lecture 15 — Email Services: MTA, POP/IMAP, Security, Mailing lists

Email is a vital service and must be as reliable as possible.

Review (show online resource):

 MUA (nail, mutt, alpine (was pine, but the developers wanted to use the Apache

Commons license and couldn’t with that name), hotmail, Outlook, ...)

 MTA, MDA (MSA discussed below)

 MAA (access agents)

 email envelope, mail headers, and mail body

 mail store mailbox file/folder (a.k.a. mbox), DBs, maildirs

 SMTP/ESMTP (demo with mail -v pollock@acm.org)

 POP, IMAP (POP is often referred to by version number POP3)

 MIME

 Notification: MAILCHECK, biff, mailutil, frm

Mail administrator = postmaster. Other required name is abuse.

Relay is the term used when an MTA accepts email that is not for local delivery. The

email is relayed to another MTA for handling. Today it is very common to have an

organization’s MTA accept email from local client machines (and localhost users if any),

and forward all this email to the ISP’s MTA. A common problem today is the open

relay. This is an MTA that is willing to relay email for anyone. Don’t do it! (Refer to

spammer article on website.)

Your service must have a clear design (architecture) and well-documented policies:

security, backup (user data, email stores, as well as fall-back off-site servers), quotas and

email retention, privacy and monitoring, naming (users and mail folders). You must

make sure someone is responsible for handling email sent to postmaster and abuse.

Your MTA must accept email from localhost users, other hosts on your network (known

as local clients), as well as incoming email from the Internet. However your MTA

should only relay email for localhost users and local clients.

Notes: Popular MTAs include Sendmail, Postfix, Exim, and MS Exchange. Most of

these include an MDA. A powerful stand-alone (can be used with any MTA) MDA is

procmail. (Procmail is powerful and flexible, but it can be much slower than other,

simpler MDAs.) There are commercial email servers that include groupware (shared

folders, calendering, addressbooks) and MAA services in one package, such as atmail or

Zimbra (supports MS MAPI protocol).

sSMTP (Simple SMTP) is a lightweight MTA to deliver mail from a computer

to a mail hub, only. sSMTP is indeed simple, there are no daemons or anything

hogging up CPU; Just the sSMTP utility. Unlike full MTAs, sSMTP does not

receive mail, expand aliases, or manage a queue. (It is more of an MUA, but

with the user interface of sendmail.) For this reason, it is often used as the MTA

for non-mail servers (since occasionally a DNS, print, file, web, etc., server

needs to send out email).

mSMTP is similar, but supports authentication, encryption, and other features.

RFCs to know: 821, 822 --> 2821, 2822 -->5321, 5322 (ESMTP), 2076 and 4021

(headers), 2045 (MIME), 1939 (POP3; also 2449 and 5034), and 3501 (IMAP). Mbox

format (a.k.a. Berkeley mailbox format) 1st mentioned in RFC-976 (UUCP mail) and

sort-of defined in RFC-4155 (application/mbox MIME file type). Many others related to

email too. (POP4 is not a standard, yet many parts of it are in current use.)

POP doesn’t support mail folders. However, there are a variety of techniques for

faking that. Sometimes IMAP folder names are appended to the user name

(login as “user#folder”), and additional POP sessions are made for each folder.

Sometimes the mailstore will add the IMAP foldername as a header when using

POP, return all folders as the content of INBOX, and let the MUA sort it out.

Some MUAs can use the server’s webmail interface behind the scenes, and

determine the IMAP folders that way.

No matter how you look at it, folders with POP are going to be unreliable. And

while you can create folders in a POP account from most MUAs, they are only

local to that MUA; there is no way to have the messages or those folders

accessible from a different MUA.

(POP4 adds support for folders, but it isn’t widely used.)

MSA is for mail submission agent. The obvious mail service architecture has the MTA

do a lot of work besides routing email (which slows down the mail service):

 Address re-writing

 sanity and error checking

 header re-writing

 mailing-list management

 security checking (authentication and encryption)

 virus and spam filtering (including gray/white/black lists)

 handing errors (logging, dropping, bouncing, re-trying)

 removing or sanitizing email bodies (unsafe HTML, scripts, or graphics)

 adding disclaimers automatically to outgoing email.

A scalable design splits the workload, with the MSA doing all the checking and

management, and the MTA just doing the mail routing. (All this is spelled out in RFC-

2476.) MSAs usually listen on port 587; the MUA can send email to the MSA on this

port, which will accept the mail from the MUA, do the work required, and if the mail

isn’t dropped send it to the MTA mail queue. A more common technique is to have the

MSA listen on port 25, and forward email to the MTA via a socket.

Some ISPs are preventing encrypted email to port 25, except by premium-paying

(enterprise) customers. To reduce spam (I think), they charge higher for direct

MTA access, and restrict other customers to using their MSA.

http://msmtp.sourceforge.net/
http://www.pop4.org/pop4/pop4spec.html

Amavis

Considering all the tasks of the MSA, it is common to use a variety of software to do all

that: Mailman, SpamAssassin, SpamPal, ClamAV, ..., rather than a single MSA server.

To facilitate this, Amavis provides a pluggable framework that does most of the work

required for an MSA. You install the other software and tell Amavis to use it. Amavis

will handle the work of uncompressing email attachments into temp files for scanning,

then handing each file to each enabled “plugin” service, one at a time, and collecting the

results.

The original Amavis has been replaced with Amavis_new. You probably don’t

want to install the original Amavis.

Amavis doesn’t handle actual SMTP conversations with clients however. Instead you

will run one instance (process) of your MTA as the front-end of an MSA, that does

nothing except hand-off the email to Amavis. Amavis in turn will send acceptable

(possibly sanitized) email to the main MTA process. For Sendmail there are two config

files, one for the submission instance and one for the MTA instance. For Postfix, you

configure each instance with the one set of config files. (Postfix has a postscreen

process you can enable, to block spam via blacklists, mx checks, etc. However,

postscreen doesn’t handle content filtering (for spam and malware.)

Milters

One problem with Amavis is that the mail must be received and queued (saved on disk)

before it can be scanned and rejected or modified (adding headers for example). Also, it

can’t handle outgoing mail (to add legal notices, or digitally sign mail). The smart folk at

Sendmail, Inc. (Now owned by ProofPoint, Inc.) invented a mail filter API, or “milter”

interface. Incoming mail can be handed to one or more milters (one after another), before

being queued. This allows you to not waste disk space or bandwidth downloading full

emails before rejecting. (So you can scan the first attachment then cancel the receipt of

the rest of the email.) Milters can also be used for out-going email, to process it just

before sending.

Milters are separate programs (from 3rd party vendors) that use the mail filter API to

communicate with an MTA. Generally, such communication is vai a socket; the milter

runs as a daemon, waiting for work to arrive from the MTA.

The idea has proven very useful, and many, many milters are available. Furthermore,

Postfix now implements the Sendmail milter API and can thus use the same milters as

sendmail. (For other MTAs that don’t support sendmail milters, you use Amavis.) Using

milters, you probably don’t need Amavis too. (However, if one of the mail processors

you want to use doesn’t support the milter API, you can always use Amavis.) See

milter.org for a catalog of milters, and more information about how they work (see the

developer section).

Email User Accounts

Managing email users is difficult. Most MTAs and MAAs can’t read /etc/shadow,

and in any case the list of users to accept email for is rarely the same as the local users.

https://www.milter.org/

Modern servers can be configured to use their own databases of users (i.e., files in /etc)

or standard ones including LDAP and Kerberos (and thus Windows active domains) to

obtain user names and passwords. Using a central store is a good idea in that a user’s

login password for the network is also their password for email. (Of course you may not

think this is a good idea!)

Mail store — Mbox, Maildir, and Databases

Managing the mail store is also difficult. The traditional method of one mailbox file per

user (Berkeley mbox format; see RFC-4155) doesn’t allow simultaneous access to a

mailbox (when two people try to send, or one sends and one is reading, the same

mailbox). The file locking required leads to poor performance if there is a lot of email

traffic.

Many systems today use a directory per user, and one mail message per file (maildir

format). Maildir format was invented by Daniel J. Bernstein for his qmail package.

Because of this, the format is sometimes called qmail format. This scheme also allows

per-user mail folders (and with some extra configuration, shared mail folders). See

cr.yp.to/proto/maildir.html for the only maildir standard document available.

Sam Varshavchik (author of the Courier Mail Server) wrote an extension to the maildir

format called maildir++. This supports subfolders and mail quotas. Maildir++

directories contain subdirectories with names that start with a “.” (dot) that are also

maildir++ folders. This extension is a violation of the maildir specification, but it is a

compatible violation and most maildir software supports maildir++. (The only definition

of maildir++ format is found in the middle of

http://www.inter7.com/courierimap/README.maildirquota.html.)

Each maildir contains three subdirectories: new, cur, and tmp. New mail is in new.

Once read it is moved to cur. tmp is used during delivery only. Maildirs will contain

additional files and/or subdirectories to support additional mail folders and management

information (such as which IMAP folders you subscribe to).

Each message has a unique (file) name. The name can’t contain any colons (or of

course slashes or null bytes). When moved from new to cur, the name changes from

name to name:2,status. The status indicates if the message has been read (“S” for

seen), moved to trash (“T”), Draft (“D”), etc.

If you would like to have a quota on your maildir mailboxes, the best solution is to

always use filesystem-based quotas: per-user usage quotas that are enforced by the

operating system. This works well when the default maildir is located in each account’s

home directory. This solution will NOT work if maildirs are stored elsewhere (say

/var/mail) since you’ll need to set up quotas on that filesystem too.

You may have a virtual domain setup where a single userid represents different users

(e.g. joe@foo.com and joe@bar.com). So one userid (on the mail server) is used

for many individual maildirs, one for each virtual user. In this case, you can use MDAs

and MAAs that support the maildir++ quota system.

http://cr.yp.to/proto/maildir.html
http://www.inter7.com/courierimap/README.maildirquota.html

With a typically huge number of saved mail message files and lots of directories, access

can be slow on some filesystems with default settings. You should pick a filesystem type

that handles large numbers of files well (and supports quotas). Newer versions of

ext2/3/4 support directory indexing (to speed up access) but you may have to enable it

manually. Make sure that your kernel is configured with CONFIG_EXT3_INDEX=y. If

this variable isn’t available, you need a new kernel. You can check if the indexing is

already enabled with tune2fs:

tune2fs -l /dev/maildir-disk | grep features

Look for dir_index. If missing, add it using:

umount /dev/hda3

tune2fs -O dir_index /dev/hda3

e2fsck -fD /dev/hda3

mount /dev/hda3

Besides mbox and maildir, other mail stores can be used such as a full-scale database

product such as MySQL, PostgreSQL, or Oracle.

Whatever the scheme for your mailstore, all MUAs, MDAs, and MAAs must be

configured to use the same one! (Some may not support all mail store types.)

Additional Issues To Consider When Designing An Email Service

You will need a static IP address for your mail server, or you will need to use one of

several dynamic DNS (dDNS) solutions out there to maintain your DNS information.

None of these schemes work too well since many organizations use caching for DNS

information. So when your IP changes, the people you get email from may not have

updated the information. Use static IPs for any mail (and other) servers.

Consider which MAA services to offer. This is a business decision, not a technical one.

Some factors in the decision include maintaining user email-only accounts on the mail

server, security (authentication and encryption), and expected load. For example, large

ISPs usually offer POP and not IMAP, because IMAP takes considerably more

resources to run. The same is true for security (e.g., POPS/IMAPS/HTTPS).

Different mail servers offer a range of security features, configurability, and scalability.

(Courier IMAP very scalable but not standard with Fedora, which as of v9 offers

Sendmail, Postfix, and Cyrus IMAP for IMAP/POP). Dovecot MAA is easier to

configure and is considered more secure than Cyrus. Also, Cyrus uses an internal mail

store and can’t be configured to use mbox or maildir. Courier offers a full

implementation of IMAP but doesn’t permit folders except as sub-folders of INBOX.

It is generally appropriate to offer at least two MAA methods, web mail plus POP or

IMAP (or both). I prefer IMAP and webmail (both with encryption, and the MTA too),

but the cost to support that for the expected workload may require webmail and POP

only. If you setup IMAP, it is usually very little extra work to setup POP too, and make

all your users happy!

IMAP is better than POP for roaming users (or those who check email from home and

office). (Q: why?)

Microsoft Exchange is a groupware server designed to work with Microsoft

Outlook, and providing features such as a messaging server, shared calendars,

contact databases, public folders, notes and tasks. The proprietary Exchange

protocol used is called MAPI. MAPI stands for Messaging Application

Programming Interface. It is a popular MAA with Windows clients but not

licensed on *nix systems.

MS Exchange servers can easily use IMAP, and so can Outlook and Outlook

Express MUAs. So if your users can live without the extra groupware features

just set up the standard Windows client configuration to use IMAP.

In the past there have been a few Open Source implementations but I’ve heard

negative reports on all of them except “Zimbra” (which is open source but not

free). However Red Hat is now (2008) backing a new one, OpenChange.

OpenChange aims to provide a portable open source implementation of

Microsoft Exchange Server and provides interoperability with the Exchange

protocol, MAPI. The OpenChange implementation provides a client-side library

that can be used in existing messaging clients, so they can offer native

compatibility with MAPI. See www.OpenChange.org for more information.

Email Security and User Authentication

You will need to consider security: How will you authenticate remote users? Many

different schemes are possible, and all are in common use. Note this must be done for

sending (MTA) and receiving (MAA) servers, and the web mail MUA too. Also,

consider virus scanning, spam filtering, and HTML sanitizing.

Other security issues are phishing protection, disabling images and scripts, a

privacy policy, adding disclaimers, email monitoring, backup, and retention.

Various other authentication schemes are available. An MTA will list the

authentication schemes it accepts with an AUTH line in the help (and sometimes initial)

menu. The client picks one of those and exchanges security information in the agreed

upon manner. While details on security will wait until another course here are some user

authentication possibilities:

 Plaintext username and password sent and cached for a few minutes. (RoadRunner

does this.)

 Use POP/IMAP before SMTP. The client must first authenticate using POP/IMAP.

That credential (user’s IP address) is cached for a minute or so. During that time,

SMTP is available from that IP address. (This authentication method fools many

folks into thinking that their MUA sends out-going email using POP or IMAP, which

isn’t possible.)

 Other methods include using public keys, challenge-response, etc. Proprietary

protocols use these methods.

To encrypt the session, the menu displayed by the remote MTA will list the

STARTTLS option. This uses standard PKI (SSL/TLS security using certificates, just

like HTTPS). Often only STARTTLS will be listed; once the secure session is

established a second menu appears with AUTH listed instead. Now using plain text

passwords are okay!

POP and IMAP don’t generally use STARTTLS. Instead, they use POPS and IMAPS on

different ports than for POP and IMAP.

Because so many security schemes are available, most MTAs and MAAs use a standard

library that provides these security services to the MTA and MAA on that server. The

authentication library commonly used for email is called SASL, the Simple

Authentication and Security Layer (RFC-4422). You configure SASL to provide the

MTA and/or MAA with the selected (approved) authentication mechanisms, then

configure the MTA/MAA to use SASL. The MTA and/or MAA will list the selected

mechanisms on the AUTH line. Note the SASL utilities will need access to the

username/password database you use.

A common SASL library was released with the Cyrus mail server project that can be used

with Postfix or Sendmail too. However, some servers use an internal SASL library, such

as the Dovecot MAA.

There are a number of other security measures you can take, such as adding SPF or

DKIM, and other email filters. Most modern MTAs allow extensions to plug into the

MTA, to support extra features. Sendmail created the framework for this, dubbed mail

filter, or milter. Other MTAs support these milters as well (including Postfix).

Design (of the mail service architecture) Scenario: A few users on a small LAN

Do you need to do anything? Most ISPs today provide POP and/or IMAP, plus an SMTP

mail relay for their customers. You probably don’t need to do anything!

If you have several mailboxes, your MUA can be configured to fetch mail from each (and

possibly integrate a set of mailboxes). An alternative is to run fetchmail to grab

email from many servers regularly, and send all such mail into a single local mailbox.

(Note some email servers make money from displaying ads when you use their web-

based MUA and don’t allow any other access.)

Design Scenario: SOHO

Okay, so you want to set up a mail system for a SOHO. In a SOHO you should only run

a single MTA, known as the mailhost or mailhub. All email should be funneled

through this server: local mail between users on a single host, or between hosts, or

arriving email from the Internet, all should be sent to this MTA for processing and

delivery. The MTA should be able to handle the expected load of email so there is no

need for a separate MSA.

If you want to use spam and/or virus checking, you can configure the MDA to filter the

email through SpamAssassin, SpamPal, rspamd, and/or ClamAV (or whatever software

you’re using for this). However, you could also setup an MSA/Amavis solution for this

with only a little more work required, which will be more efficient, and allow you to use

multiple scanners if desired.

It pays to keep all user mailboxes on this same server. That way it is easy to backup all

user mailboxes regularly, and you minimize LAN bandwidth use.

Users on localhost (there shouldn’t be any) can simply use any MUA to read their email.

However, users on other hosts will need to use some MAA: POP, IMAP, a web mail

interface, or some combination of these. Such services are usually run on the same

host as the MTA.

For a SOHO, access via IMAP and web mail only will work, with security (user

authentication) required only for Internet access from roaming users.

Most ISPs offer a (small) number of email accounts with their service, so if that

seems secure enough, a SOHO won’t need any mail service at all.

Design Scenario: Large Organization

In this scenario you may have many users (hundreds or thousands of clients), roaming

users, possibly several ISPs, and possibly several branch offices connected by a WAN (or

a VPN across the Internet).

See HEC Montréal: Deployment of a Large-Scale Mail Installation for a good

example.

You will need MTAs on each branch (to reduce WAN traffic), a central MTA (mailhost)

and a backup MTA.

You will need to decide what MAAs to support and how (per branch, or by central server

access only). In this case scalability is very important. Roaming user access can be

very important as well, requiring user authentication and strong security. It is often in

this scenario that you find mail server farms (clusters/grids), and a separate MSA from

the MTA. Since the processing of email is slow (seconds to minutes per message), the

network bandwidth is usually not as important as fast processing.

Unlike with web application servers (where you have state such as a shopping

cart to keep track of between HTTP messages) each email message is

independent of others. So effective load balancing can be done easily

(cheaply) using DNS round-robin for some set of (otherwise identical)

mailservers. Even if some client or proxy server caches an IP address, this

scheme will work well enough, most of the time. You generally just need to

specify several MX records with the same preference value. (Bind sends the

records in a different order every time. Sendmail will pick one randomly.)

Otherwise you need a load balancer such as BigIP from F5.

You must decide if the MTAs at each branch should be allowed to accept or send email

to any MTAs other than internal ones (or maybe just to the central MTA). Allowing

https://rspamd.com/
http://www.linuxjournal.com/article/7323

branch MTAs to communicate directly reduces WAN traffic and load on the central

MTA, possibly eliminating the need for a cluster there. However there are problems with

allowing this: replies get sent (by default) to the branch and not the main MTA, email

names and aliases may still need to be centrally managed so now you have a

synchronization task when names or aliases change, and external clients will “see” the

branch MTAs. If not centrally managed each branch will end up with its own domain

name and email naming scheme and set of aliases. This confuses clients (who don’t

“see” one organization) and complicates employee migrations (email redirections will be

needed from the old branch).

It is usually better to have all email from one organization masquerade as a single

domain name even if branch MTAs are allowed to contact outside clients. This means

all email addresses, both envelope and header and including the “from” address, must be

re-written as user@domain-name before sending. (However some addresses should not

be masqueraded, e.g. root@host.domain-name.)

In addition to this spoke and hub design, you have all the same issues as for SOHO.

Managing enterprise email is no easy task!

Email can be DNS intensive. Use a caching DNS server on each mail server. In any

case the maintenance tasks for the DNS records for email must not be forgotten when

branches change system administrators.

Note! One of the first steps in the following directions is to set up networking

properly for a mail server. However this is a topic discussed in the next class,

not this one. So don’t worry if you don’t fully understand the network setup

instructions, and don’t be afraid (or ashamed) to ask for help. There is a detailed

walk-thru of the complete setup on-line you can consult if you get stuck.

Install Tasks Overview (Details follow)

 System prep:

o Configure networking: Set static IP, hostname and domain name

(sysconfig/network on RH). Configure resolver (default domain, DNS

server IP addresses). Verify network connectivity (Static IP, gateway, all required

firewall holes, TCP wrapper configuration). (RH files: sysconfig/network,

network-scripts/ifcfg-eth0). Configure DNS: host and domain names,

reverse IP lookup, MX records, and possibly SPF and other records in the primary

nameserver. If that’s a different host, set up a caching nameserver locally.

o Configure reliable system time: NTP requires UDP/123, in and out.

 Use NTP service: ntpd; config files: ntp.conf, ntp/*.

o Configure syslog and logrotate for mail facility (should be done

automatically, but check).

o Configure security subsystems: fix or turn off SELinux (the default policy as of

F12 doesn’t work with Postfix); edit /etc/selinux/config and set to permissive);

make firewall holes for email ports: TCP/25, TCP/110 (POP3), TCP/143 (IMAP),

TCP/993 (IMAPS), and TCP/995 (POPS3); configure TCP wrappers (hosts.allow)

for your MTA, MSA, and MAA, if they use libwrap.so; and configure PAM and

SASL (the defaults should work fine).

 Configure MTA (postfix or sendmail): Make sure your selected MTA is

installed (see alternatives service for “mta”). For sendmail, you need both

sendmail and sendmail-cf packages. If using authentication, make sure SASL

(cyrus-sasl) is installed as well. If installing multiple MTAs (e.g., both

sendmail and postfix) you must first install “alternatives” (galternatives; but

part of chkconfig package as of F12). Most of these packages will be installed by

default but check to make sure!

 Configure email aliases.

 Configure security: SASL, TLS, STARTTLS, SMTP AUTH, SSL/TLS (web mail),

blacklists, whitelists, greylists, SPF. (Done in security course.)

 Configure MAA (e.g., dovecot) for POP/POPS/IMAP/IMAPS.

 Configure MAA (e.g., dovecot), MDA (e.g. procmail), and MUAs (local ones,

e.g. webmail, mutt, alpine, mailx) to use the chosen mail store. (And migrate

any existing email to the new location.)

 Configure Mail filtering (virus, spam, DoS attack countermeasures). This often

includes configuring Amavis (amavisd-new), some MSA, and one or more

scanners. (Done in security class.)

 Configure Web mail MUA (e.g. squirrelmail). Note you will need to configure

a web service (e.g. Apache, httpd) first.

 Monitoring for space, errors, security incidents; check log files for configuration

errors, dropped mail, long delays, evidence of SPAM, or attacks.

 Perform regular maintenance:

o configuring the daemons (e.g., sendmail and/or postfix)

o update files as needed (such as user aliases or email redirects)

o hiring/firing of employees

o changing roles of employees, ...)

o maintain mail lists

o check for updates (especially security related patches)

o set and document policies (e.g., email addresses)

o maintain address books

o web mail (and Apache) software maintenance

o Regular backups of user’s mailboxes

o reply to queries (abuse and postmaster)

Detailed Directions:

Set hostname, domain name: (Skip these steps for CTS-2322 email project.)

1. Edit /etc/sysconfig/network to include your new host name:

HOSTNAME="wpserver"

2. Edit /etc/hosts to include your new FQDN:

127.0.0.1 localhost.localdomain localhost

172.22.25.11 wpserver.gcaw.org wpserver

3. Edit /etc/sysconfig/network-scripts/ifcfg-eth0 to:

DEVICE=eth0

IPADDR=172.22.25.11 The static IP for the Instructor’s host
NETMASK=255.255.255.0

GATEWAY=172.22.25.1 This may or may not work in DTEC-461
BOOTPROTO=none

ONBOOT=yes

(Note your NIC may not be “eth0”, and the classroom IP addresses may be

different.)

Setup cashing-only name server as forward-only: (Skip this step for CTS-2322 email

project.)

The last problem is to get your resolver to resolve the names assigned to our class. This

is harder than it appears as we are using a fake domain name, “gcaw.org”.

You have several choices: Configure your named (BIND) to be authoritative for

gcaw.org. (This is what I have done on the instructor’s host.) An easier choice would

be to set your resolver to only use the instructor’s host DNS server, by removing all other

nameserver directives from resolv.conf. Or you can configure your caching

nameserver to forward all requests to the instructor’s host. This is easy if you’ve already

setup named as a caching DNS server. Add the following lines to your named.conf

file in the options section:

forwarders { 172.22.25.11; };

forward only;

You must reboot to activate changes to your hostname (or, use hostname command and

then restart every network service (since they cache that name). Rebooting is easier!)

Verify network connectivity:

I will provide you with a static IP address you can use. To obtain one edit the

hostname page on the class wiki. Note that others won’t be able to send you email as

they don’t know your name or IP address. And without MX records, user@domain

won’t work at all. Setup your resolver to use files before DNS, and add all the names

and IP addresses from the wiki. Also, I will set up the instructor’s workstation as an

authoritative DNS server for gcaw.org, so you can point your resolver to use that.

(The instructor’s firewall must allow incoming port UDP/53.) Make sure the

instructor’s workstation is booted before working on your own server in the classroom!

Configure Reliable Time, Time Zones, And Locales:

The short answer is to configure NTP, /etc/localtime (and/or TZ), and set the

proper default locale (so timestamps in email messages show up correctly). This is

probably done already as part of the default install. These topics will be discussed in

detail later in this course.

Configure Syslog and Logrotate for Mail Facility:

Log anything (not mail, ...) of level info or higher.

Don't log private authentication messages!

*.info;mail.none;news.none;authpriv.none;cron.none \

 /var/log/messages

Log all the mail messages in one place.

mail.* /var/log/maillog

Configure resolver and DNS with Mail Exchanger (MX) & SPF (& DKIM) records:

 (Skip these steps for CTS-2322 email project.)

For testing on a single host away from HCC you can avoid using DNS by configuring

your hosts file with the IP address you get from DHCP (and your chosen hostname).

As long as you don’t reboot (and even if you do, as long as your IP address remains the

same) and the resolver uses files before DNS, you will be able to use that host and

domain name. You should also add your new (fake) domain name to the search

directive in resolv.conf. Multiple domains may be listed but the first becomes the

default domain. Make sure that is gcaw.org:

search gcaw.org hccfl.edu

MX records in the DNS DB tell people the IP address to send email to for a given domain

name. If the mail server which will serve your new domain will have a full-time

connection to the Internet, it should be the primary MX host for your domain. In this

configuration, your MX records would look like this:

 yourdomain.com. IN MX 10 yourmailserver.yourdomain.com.

In the real-world, you need to find another machine to queue mail for your domain while

your machine is down for any reason. You point your MX records at that backup mail

server, with a lower priority (higher number). For example:

 yourdomain.com. IN MX 10 yourmailserver.yourdomain.com.

 yourdomain.com. IN MX 20 othermailserver.otherdomain.com.

(“othermailserver” is an off-site backup mail server so mail never bounces.) When an

MTA attempts to delivery email it will look up the MX records and use the highest

priority (lowest numbered) one that it can connect with. If several have the same

priority it may pick the same one every time, round-robin, or randomly pick one

(sendmail does that).

Always use the canonical domain name in MX records, or routing loops (or other

errors) can occur!

For large organizations, you might want your own mail servers directly connected to the

Internet and add an offsite backup mail server. Additionally you will want to verify your

A and PTR records so the server name resolves correctly.

Finally, you will want to add the security features. SPF (Sender Policy Framework

spf.pobox.com/) uses an SPF (older: TXT) record that is used to indicate the

authorized MTA IP address for some domain, as shown below. (So when my MTA

receives email from some mail server at 1.2.3.4 claiming the email is from

wpollock.com, a simple DNS lookup will show the email is coming from a fake

address and hence is spam.) Another popular security scheme is

DomainKeysIdentfiedMail (dkim.org), which is a bit more complex.

(TODO: Show DKIM setup.)

A complete set of records might look like this:

; DNS zone file for: gcaw.org

; Generated by Wayne Pollock, 3-7-02

$TTL 86400

$ORIGIN gcaw.org.

@ IN SOA ns1.gcaw.org. hostmaster.gcaw.org. (

 2004081900 ; serial

 360000 ; refresh, seconds

 7200 ; retry, seconds

 3600000 ; expire, seconds

 360000) ; minimum, seconds

; Nameserver(s):

 IN NS ns1.gcaw.org.

 IN NS ns2.gcaw.org.

; MX: "user@gcaw.org" is sent to "user@mail.gcaw.org":

 IN MX 10 mail.gcaw.org.

 IN SPF "v=spf1 a mx ptr -all"

; Records for this host (the primary nameserver):

 IN A 10.41.223.253

; Aliases:

www IN CNAME @

mail IN CNAME @

ftp IN CNAME @

Configure Security Sub-systems:

Edit the firewall rules. On on many Red Hat systems, these are in the files

/etc/sysconfig/ip*tables. You can copy a line such as the one that allows

SSH (port TCP/22), and paste it, and change the port number on the copy. You will need

one such rule for each firewall hole: ports 25, 110, 143, 993, and 995 (all TCP). If you

don’t want to support plain, un-encrypted POP and IMAP, you don’t need ports 110 or

143. On Fedora, you can easily reload the modified rules file with “service

iptables restart”.

Remember to add the same holes for IPv6 (unless you don’t plan on using that yet.)

Newer versions of Fedora use firewalld to manage the rules. That tool has

its own files for storing rules between reboots, so editing the iptables files

directly won’t work. You must either use the firewalld configuration files

and tools, or disable that and enable the old iptables service.

Make sure SELinux will allow your services. The targeted policy used by default on

Fedora 14 works for Sendmail but not Postfix. Hopefully this isn’t an issue anymore, but

I suggest you set SELinux to permissive mode for now. (In a production setting, you’d

want to get the policy fixed.) Do this by editing /etc/selinux/config and reading

the comments.) To change without rebooting, use getenforce and setenforce

commands.

Some MTAs, MSAs, and MAAs use TCP Wrappers. If so, you need to allow them by

editing the /etc/hosts.allow file. Dovecot uses programs from

/usr/libexec/dovecot/*. You may have to list those programs too in the

.allow file. (On Fedora 13, just /usr/sbin/dovecotpw and

/usr/libexec/dovecot/dovecot-auth use PAM, and none of the programs

use TCP Wrappers or SASL.)

MAAs (MTAs also if configured for it) use PAM and/or SASL for authentication. You

may need to configure these services.

To see if some program uses PAM or TCP Wrappers, use “ldd path-to-

program” and see if it was compiled with libwrap.so or libpam.so.

Configure MTA (Postfix): (Skip if using sendmail MTA.)

A note on names: Sendmail has been the MTA for 25 years. Many program

have hard-coded the names of the sendmail utilities and command line options.

This is why sendmail config is in /etc/mail not /etc/sendmail, and why

the binaries are usually called sendmail, mailq, etc., even if using Postfix

(or another) MTA.

Postfix is unlike Sendmail in some respects. Instead of one huge program, it is composed

of over a half-dozen programs, each doing a single job. These programs don’t need

special IPC either; one program processes a mail message saved in a file, then the next

program can deal with it. Sometimes the programs communicate with simple pipes.

These programs can run in parallel (on different messages), and several instances of each

can be running at once. Finally, these programs don’t need root permissions, and can

even run inside chroot jails. This design makes Postfix responsive, and by keeping each

piece simple, helps ensure there were no security flaws.

For example, arriving mail connection attempts are handled by smtpd, one process per

connection. The resulting mail is then passed to cleanup, which adds Received

headers (and any missing important headers). The message is then saved in a directory

known as the incoming mail queue. qmgr watches that queue and hands the message to

local or some other software for handling or relaying the message. (See

postfix.org/OVERVIEW.html for more details.)

The flow of email from one program to another is controlled by master. For example,

if you wanted to run an MSA to screen out some spam, you configure master to hand

connections to postscreen instead of smtpd, and have postscreen sent the

message to smtpd. Master is the only program that needs to run as root, so it can

listen on port 25. The remaining programs don’t run as root (actually, there are two

unprivileged user accounts used, to keep things even more secure). The master

program also defines how the other programs will communicate, what options are passed

to those programs when started, and how many instances to allow running

simultaneously. Once configured for your architecture, you rarely need to edit

master.cf. All remaining configuration is done by editing main.cf. (There are

other files used in some cases, as well.)

Postfix allows one to continue long lines in these config files; if any line starts

with white-space, it is assumed a continuation of the last non-comment line.

This can catch the unwary: if you un-comment out some line by removing a

leading “#”, and that is followed by a space, you need to remember to remove

the space as well! The error message (if any) will be about the previous line,

which could be dozens of lines earlier in the file.

To configure Postfix, first make sure it is installed. Most servers setup sendmail. (The

Solaris default setup forwards all mail to mailhost.domain, where the central MTA (hub)

should be. So be sure the canonical name of your MTA host in the DNS records is

mailhost.)

Some systems allow several MTAs to be installed at the same time, using the

alternatives --config mta command. Make sure all MTAs are stopped before

switching from one to another! Without the alternatives system of symlinks, the last

installed MTA will overwrite some of the files and commands of the one installed earlier.

In any case, make sure all mail servers are off now, and only Postfix is configured to

start at boot time.

Postfix accepts email from localhost (the loopback interface) and other interfaces if it is

configured to, optionally checks email for problems (and then drops, logs, or bounces the

email), and delivers it to local users (by default using an internal MDA). Email is also

examined for some changes to make: add missing headers, fix some errors, and rewrite

sender/recipient addresses (e.g., change “wayne” to “wayne@domain”) to masquerade

the domain.

The only problem with this setup is, mail sent to system accounts and then forwarded to

some human will be from “root@domain” and you won’t know which host sent the

email. To take care of root and other system accounts, you need to use the address

rewriting features of Postfix (see the readme for details).

http://www.postfix.org/OVERVIEW.html

For a minimal SOHO setup, you only need to make sure TCP port 25 gets through

your firewall (and possibly TCP Wrappers), and edit /etc/postfix/main.cf

with these lines:
myhostname = localhost # or a real name:wpserver.gcaw.org

mydomain = localdomain # or a real one: gcaw.org

myorigin = $mydomain

mydestination = $myhostname localhost localhost.$mydomain

 $mydomain

inet_interfaces = all # and comment out the loalhost line!

 (The symbol “” means the line was wrapped for readability; it should be entered as a

single long line.) Check it with: postfix -v check.

The setting for myorigin may need to be different. Fedora and other Red Hat

based systems incorrectly set the hostname, and swap the name and the FQDN.

This confuses Postfix; the error shows up as mail to or from

user@localdomain.localdomain. If you have one computer only, or

are using the default network setup (as you will with the CTS-2322 email

project), you should set myorgin to $myhostname instead. (The

main.cf-diff resource show this both ways.)

Once your MTA is installed, you must start it. For postfix use:

 # postfix start or postfix reload

Once your MTA is installed and started, you must test it:

 # echo "it works" |sendmail -f root root & \

 tail -f /var/log/maillog

Note the command is sendmail no matter what your MTA is!

By default, the Postfix MDA (local) will deliver mail to /var/mail/username in

MBOX format.

To test your MTA from a different machine, use the email address syntax of

“username@[ip-address]”; the square braces are required!

Configure MTA (Sendmail): (Skip if using Postfix)

Sendmail is the oldest MTA and still one of the most popular. Early versions had some

security issues, but that isn’t true anymore. Sendmail is more configurable than most

MTAs, and includes more features than most. It is also very efficient (if configured

correctly). Configuring sendmail can be difficult, and there is commercial support

available to help with that.

Generally, sendmail runs two instances, one listening for incoming mail (placed in

/var/spool/mqueue until delivered/deleted), and another for locally-originated,

outgoing mail (placed in /var/spool/clientmqueue until sent). Each instance has

a separate configuration file, /etc/mail/sendmail.mc and .../submit.mc.

These .mc files are actually macro files; after editing them you must run make to build

the actual configuration files, *.cf. Although text, the .cf files are best thought of as

binaries (that is, don’t try to edit them directly).

The configuration directives in the sendmail configuration files enable various features,

but those only work if the corresponding features have been compiled into the binary. To

see what features are compiled into a sendmail binary, run:

 $ sendmail -bt -d0.13 </dev/null

In addition to declaring what features to enable at runtime, the config files may contain

option settings. In most cases, the order of the macros in the .mc file matters.

Older versions of sendmail ran SetUID root. This is insecure and newer versions don’t.

However, any MTA must still be started as root in order to listen for incoming mail on

the well-known port TCP/25. To have access to secure mail queue files and directories,

those files and directories are accessible by group “smmsp” (sendmail mail submission

program). The sendmail binary is run SetGID to this group to allow access.

As with some other MTAs, sendmail runs as a number of separate processes. One (the

MTA) must be run as root to listen on port 25. The other (the MSA) handles locally

submitted email and thus doesn’t need to run as root. Unlike Postfix both parts are built

into the same program, so if you run “ps -ef” you will see two sendmail processes

running. The difference is the command line arguments used.

The first instance listens on port 25, runs as root, and uses sendmail.cf configuration

file. The second instance uses a different configuration file, submit.cf. This instance

is used (if the file exists) when a local MUA “submits” an email to sendmail. (The

sendmail startup script starts both daemons.) Generally, the default submit.cf is

fine, accepting email only from local MUAs.

To start sendmail use -bd (run as daemon), -q15m (check the mail queue every 15

minutes), -v envelope_address <msg_including_headers.

With Solaris, sendmail needs some additional configuration to work. Make

an entry in /etc/host for mailhost (which should be the IP of your mail

hub; this might be the current host on a SOHO or stand-alone workstation

configuration. Next, modify the sendmail m4 config file

/usr/lib/mail/cf/mail.cf with the following entries:

OSTYPE(`solaris2')

MASQUERADE_AS(`gcaw.org')

FEATURE(`nullclient', `mailhost')

Next rebuild sendmail.cf with:

 m4 ../m4/cf.m4 mail.cf >/etc/mail/sendmail.cf

As of Solaris 9, you need to configure sendmail as your message submission

agent (MSA) as well as your message transfer agent (MTA). See Internet RFC

2476, and see /usr/lib/mail/cf/submit.mc for a prototype.

Sendmail Configuration Files (in /etc/mail)

Sendmail has the most complex configuration file of any program ever. This file,

sendmail.cf (and submit.cf) is written in a custom language! Because it has

proven impossible to edit this file (for the most part), a much simpler configuration file is

used, sendmail.mc (and submit.mc). This file is written using “m4” macros. It is

used to generate the sendmail.cf file. The easiest way is to just use the make

command from the /etc/mail directory.

M4 is an old Unix facility for macro processing text files, and has an unusual syntax:

quotes come in pairs: `this is quoted'. In addition, the string dnl starts a

comment. The order of statements in this file matters:

divert(-1)

comments go here

divert(0)dnl - the dnl means “discard thru newline”, saves space in sm.cf

VERSIONID(`@(#) filename.mc 1.0 (sendmail) 6/20/02')

OSTYPE(`Linux')

defines and FEATURE macros go here

MAILER(local) Use an MDA (allows local delivery)

MAILER(smtp) Allows SMTP (MTA)

The most important line to change is:

DAEMON_OPTIONS(`Port=smtp,Addr=127.0.0.1, Name=MTA')

The default config is for a client configuration only (outgoing email but sendmail will not

listen for incoming email except from localhost), which is fine if you use POP or IMAP

only for email. To fix, remove the “,Addr=127.0.0.1” option.

There are other files to edit in this directory. After any changes run make:

local-host-names (cw) - A list of name for which this server will accept email for

local delivery. (Basically a list of aliases for the hostname.)

/etc/alias - The general use of aliases is to make aliases for roles then assign people

to the roles (as is sales, cathy above). The .REDIRECT feature will bounce the mail to

the sender, with a message containing the new email address. (When this file is updated

you must run the newaliases command, not make.)

virtualusertable - For more complex aliases such as when you are hosting another

domain (or in some cases when relaying), you must use the virtualusertable,

which will allow aliases that are not allowed in the alias file, such as

“postmaster@other.com: postmaster”.

access - Control spam by defining which hosts (if any) are allowed to relay mail thru

this host. Basically this table is a list of email address, domain names, or IP network

numbers. For each an action can be specified: Discard, OK, RELAY, REJECT, or 550

some error message.

trusted-users (ct) - A list of trusted users. Only trusted users can forge the From

headers. (Useful when a service such as Apache or sendmail itself generates email

automatically and you which the email to appear to come from user or some standard

alias. (For example webmaster@mydomain instead of root@mydomain or

nobody@mydomain.)

genericstable - Convert outgoing email names to full names: wpollock to

“Wayne Pollock”. Not often needed since many MUAs use both email and full

names in the To: header.

Some macros to consider changing/adding include:

FEATURE(`promiscous_relay')

Relay mail from anywhere. Bad idea.
FEATURE(`relay_entire_domain')

Relay mail from any local domain name.
FEATURE(`relay_based_on_MX')

Relay mail from any host that lists the local host as the mail server in its MX DNS

record.
FEATURE(`relay_local_from')

Relay mail that uses the local host in the FROM: header. Easily forged so don’t

use.
FEATURE(`relay_hosts_only')

Relay only from hosts (w/o this, domains are listed) in /etc/mail/relay-

domains.
FEATURE(`accept_unresolvable_domains')

Accept mail from unknown domains (i.e., DNS lookup fails).
FEATURE(`nocanonify')

Skip the DNS lookup altogether. ???
FEATURE(`access_db')

Uses /etc/mail/access to allow mail to listed hosts/domains.
FEATURE(`blacklist_recipients')

Allows access DB to block senders too.
FEATURE(`rbl')

Real-time black list (of spammers), see www.mail-abuse.org.

Sendmail Satellite Configuration

Use LOCAL_RELAY(hub) to have unqualified names (“joe”) sent to hub. Use

MAIL_HUB(hub) to have local-qualified names (“joe@local.host”) go to hub.

Use SMART_HOST(hub) to have all other names go through hub. (Of course, hub

must allow relaying from local.host or this won’t work.)

Other sendmail m4 configuration options

FEATURE(`redirect')

Allows aliases of old new.REDIRECT, and mail arriving for old will bounce

with a message giving new.

FEATURE(`use_cw_file')

Use sendmail.cw file to list aliases for the localhost, e.g., mail.foo.org, foo.org,

bar.org, mail.bar.org.
FEATURE(`use_ct_file')

Use sendmail.ct file to list trusted users who are allowed to forge FROM headers

(root, www, ...).
MASQUARADE_AS(`foo.org')

Use foo.org in outbound email headers in lieu of the real local hostname.
FEATURE(`masquerade_envelope')

Masquerade addesses in the envelope too.
define(`PROCMAIL_MAILER_PATH’, `/usr/bin/procmail’)dnl

FEATURE(local_procmail, `/usr/bin/procmail')

Use procmail as local MDA. Procmail is smart with SPAM filters you can set.

Use /etc/procmailrc and ~/.procmailrc.
define(`MAIL_HUB', `mail.hcc.com')

Incoming mail from mail hub ???
define(`SMART_HOST', `mail.hcc.com')

Out-going mail to the hub) ???

Testing the Email MTA Service:

There should be some useful log entries, and some email in root’s mailbox. The next test

is “mail root” command. Next you can try it from another host (some.other.server)

using mail command, or telnet yourhost 25:

HELO some.other.server or EHLO ... for ESMTP
MAIL From:<user@some.other.server> SIZE=35

 AUTH=user@some.other.server

RCPT TO: <root@your.server>

DATA

Subject: test

Hey, this works too!

.

QUIT

Another way to test is to send a piece of email to one or more auto-responders:

sa-test@sendmail.net

check-auth@verifier.port25.com

autorespond+dkim@dk.elandsys.com

test@dkimtest.jason.long.name

dktest@exhalus.net

dkim-test@altn.com

dktest@blackops.org

The email should be returned to you showing your message in the body of a new

message, including all of the header changes that were made in transit.

Another alternative is to send a message to an email service provider such as Gmail or

Yahoo!, and view the full text of the message you receive there.

Mail Aliases:

/etc/aliases (or /etc/mail/aliases or /etc/postfix/aliases, but

location is configurable so make sure you edit the right one!) is used when email arrives

from any source (local MUA, remote MTA) to examine and possibly modify the TO

addresses in the email. Use newaliases command (or postalias aliases) after

any changes to this file. (The postmap command works but issues warnings about the

colons in the file. I recommend just using the semi-standard newaliases command.)

This file allows one name in the local domain to be sent to a different email address. (So

does the .forward file in the user’s home directory.) Examples:

postmaster: root

abuse: postmaster

virusalert: /dev/null

sales: cathy

billing: jsmith@foo.com

sysadmins: wayne, bob, mike

root: sysadmins

joe: joe@hisNewJob.com.REDIRECT sendmail only feature!

The general use of aliases is to make aliases for roles then assign people to the roles (as is

“sales: cathy” above). The .REDIRECT feature will bounce the mail to the sender,

with a message containing the new email address. (Only for Sendmail, not Postfix!)

Using Postfix you do this by creating a relocation map like this:

relocated_maps=hash:/etc/postfix/relocated. Then edit that file with

lines like this: joe joe@hisNewJob.com

Like all Postfix map files, the human readable file must be converted to a database form.

In general use postmap file but for aliases use postalias file instead.

After changes to any map file such as /etc/aliases, the MTA daemon must

be reloaded or restarted!

For more complex aliases such as when you are hosting another domain (or in some cases

when relaying), you must use the virtual table, which will allow aliases such as

“postmaster@other.com: postmaster”, which isn’t allowed in the alias file.

Such an alias will funnel all email for the various postmasters (the ones with virtual

domains on your server) to a single account.

POP / IMAP

You might allow POP/IMAP access only to email for all members of your organization.

Or you might have several “branch” offices each with its own email server, but

configured to send and receive all email through a central mail server. Such a central

server is referred to as a mail hub (or mailhost). Sendmail refers to it as a smart_host.

The hub must allow relaying to the branch office hubs.

A firewall should be used to prevent other hosts from sending/receiving email. You will

need to open TCP ports (not UDP) for pop3s (995), imaps (993), and maybe pop3

(110) and imap (143) too.

 grep -i 'pop3|imap' /etc/services.

Edit /etc/sysconfig/iptables, copy some TCP line 4 times and change the port

numbers, then restart iptables. In addition, you will need to add the following to

/etc/hosts.allow:

imap imaps pop3 pop3s: 127. .gcaw.org

Since your MAA doesn’t generally use the default system mailboxes in /var/mail,

mail put there by the MDA won’t be found by your MAA. The MDA must deliver mail

where the MAA expects to find it.

Using Dovecot MAA

To configure Dovecot as the MAA, you need to verify that /etc/pam.d/dovecot is

there and correct (usually just “auth pam-stack.so service=system-auth”).

Next, make any needed changes to dovecot.conf. (On Fedora 14 and newer, this one

large file is now split into many smaller files. You need to make changes to

/etc/dovecot/conf.d/10-mail.conf.) The defaults on Fedora seem fine (uses

mbox, IMAP, and POP), but you can tweak this if desired; I made these changes (first

two lines are for default mbox operation):

mail_location = mbox:~/mail:INBOX=/var/mail/%u

mbox_very_dirty_syncs = yes

mail_privileged_group = mail

maildir_stat_dirs = yes # slower but safer

auth_verbose = yes # for debugging auth problems

mail_debug = yes # to debug why mail isn't found

After setting up your firewall / TCP wrappers access, turn on Dovecot:

chkconfig dovecot on; /etc/init.d/dovecot start

(tail maillog for any problems and fix.) After a basic setup is working, you can go

back and make more elaborate changes to suit.

To test your setup, send yourself an email so /var/mail/user MBOX exists and

isn’t empty. Next, try mailx or mutt, telling the MUA to use IMAP (or POP):

 MAIL="imap://$USER@localhost/INBOX" mailx

This may fail; check the maillog to see why. In my case, there was a Dovecot error

message about failing to chown /home/wpollock/mail/.imap. The trick for me

was to set up that folder for maildirs, including a .imap directory, for Dovcot:

 mkdir -p ~/mail/{new,cur,tmp,.imap/INBOX}

 # chgrp -R mail ~/mail/ # May not be needed?

(You may not need all those, but it can’t hurt, and you will need them later, when you set

up maildirs.) You should all those folders to /etc/skel, so new accounts get them

automatically.

You can also connect to your POP or IMAP port using telnet or nc. More details on

testing can be found below in TestingPopAndImap.

Configuration for Maildirs or IMAP

At this point, no any MUA or MDA is set to use maildirs. Older MUAs such as mail

don’t understand IMAP/POP or maildir mailboxes, so you read your mail using some

modern MUA: alpine (with the maildir patch), mutt, nail/mailx, or some GUI MUA

such as Thunderbird.

In most cases, to indicate mbox you specify a pathname to a file, and to indicate

maildirs you specify a pathname to a directory including a trailing slash.

Some MUAs (and some MDAs, and some additional utilities) recognize both MAIL and

MAILDIR environment variables. It can’t hurt to set both when using Maildirs.

There is a Perl script mb2md to convert existing mbox files to maildirs (see

batleth.sapienti-sat.org/projects/mb2md/). There is a

command maildirmake to create the (empty) folder structure), but most

MDAs will create it as needed.

Dovecot: To have Dovecot use maildirs in the user’s home directory, make the following

changes to /etc/dovecot/conf.d/10-mail.conf:

mail_location = maildir:~/Maildir #trailing slash not needed
mail_location = mbox:~/mail:INBOX=/var/mail/%u

Procmail MDA: To use maildirs for delivery, you need to configure the MDA

configured in the MTA. Often this is procmail. The sendmail sendmail.mc

configuration file has a command line to use to invoke procmail, and this has one

option on Fedora by default that must be removed: “-Y” says to assume mbox format.

Make the following change in sendmail.mc:

< FEATURE(local_procmail,`',`procmail -t -Y -a $h -d $u')dnl

> FEATURE(local_procmail,`',`procmail -t -a $h -d $u')dnl

Then rebuild the sendmail.cf file using make, and restart sendmail.

Next configure procmail. On most systems (including Fedora), procmail has no

global configuration file by default. You must create one (or use the ~/.procmailrc

files). Add the following to a new /etc/procmailrc (or any new file in

/etc/procmailrcs/, depending on your system setup):

ORGMAIL=$HOME/Maildir/ Trailing slash says to use maildir
DEFAULT=$HOME/Maildir/

MAILDIR=$HOME/Maildir/

Postfix MDA: Postfix uses an internal MDA, “local(8)” by default. To have Postfix’s

built-in MDA will deliver email to a user’s home directory in maildir format:

 home_mailbox = Maildir/ Trailing slash says to use maildir

(Remember to reload Postfix. Use: ls -laR ~/Maildir to see the affect.) To instead

have Postfix use another MDA such as procmail (which you still need to configure),

you change the “local” transport in the Postfix main.cf file:

 mailbox_command = /path/to/procmail

You may be able to have all the procmail config info passed on the command line, and

avoid editing /etc/procmail*, like this:

mailbox_command = /usr/bin/procmail -a "$EXTENSION"

 DEFAULT=$HOME/Maildir/ MAILDIR=$HOME/Maildir

mailx: To configure nail/mailx to use the new maildirs, add the following to

/etc/mail.rc or to your ~/.mailrc (or see the MAIL environment variable,

below):

set newfolders=maildir

set folder=Maildir/ Trailing slash says to use maildir
set MAIL=Maildir/

(and comment out the set newmail=nopoll line).

To use IMAP instead with nail/mailx, use (or see the MAIL environment variable, below)

the following configuration:

set folder=imap://user@localhost

Mutt: In addition to ~/.muttrc, you can use the global config in /etc/Muttrc and

Muttrc.local (note the annoying capital “M”!). Add the following to

Muttrc.local (only the first 4 lines are required, I just like the others) to make it use

local maildirs:

set mbox_type=Maildir

set spoolfile="~/Maildir/"

set folder="~/Maildir/"

set maildir_trash=yes

set sleep_time=3

color indicator white red

set allow_ansi = yes

If you want mutt or nail use your IMAP server instead of directly accessing

mailboxes (mbox or maildir), add the following in ~/.bash_profile

or/etc/profile or /etc/profile.d/imap.sh:

 export MAIL="imap://$USER@localhost/INBOX"

or for pop:

 export MAIL="pop://$USER@localhost/"

(or use “pops” or “imaps” instead of “pop” and “imap” if you wish.)

Alpine: You can configure alpine (or pine) to use maildirs by rebuilding the source

and adding the required patch. However Pine does work with IMAP out of the box.

Under Setup-->config, configure your inbox-path as:

inbox-path={wphome1.gcaw.org/novalidate-cert/user=wpollock/ssl}INBOX

user-domain=wphome1.gcaw.org optional

smtp-server=wphome1.gcaw.org optional

Authenticating Users (Skip these steps for CTS-2322 email project.)

To allow MTAs (and some MAAs) to authenticate users, SASL is generally used. (Some

will use PAM instead.) SASL provides a number of different mechanisms for

authentication. You need to configure your MAA and MTA to use one of them (the

Fedora defaults are fine for localhost users).

By default dovecot (and other MAAs) will use plain text usernames and passwords

to authenticate users against /etc/passwd and /etc/shadow. This is

dangerous! However, using email from localhost to localhost means the passwords will

not traverse your network, and thus is safe.

Dovecot will use a generic SSL cert with localhost.localdomain as the server

name. You can make your own certificates using the following command:

openssl req -new -x509 -nodes -out /tmp/public.pem \

 -keyout /tmp/private.pem -days 3650

cp /tmp/public.pem /usr/share/ssl/certs/dovecot.pem

cp /tmp/private.pem /usr/share/ssl/private/dovecot.pem

service dovecot restart

Cyrus imapd MAA: Using with Postfix and SASL (Skip this if using Dovecot.)

The simple setup is to use your MAA as your MDA (if it supports it). If using Cyrus

imapd, just make sure it is configured to run at boot time and change postfix to use

cyrus as the MDA by un-commenting the lines in main.cf:

mailbox_transport = cyrus

local_recipient_maps =

(The second line re-enables alias checking, disabled when changing the MDA.) Then

check (and change if needed) the path for the Cyrus-imapd deliver MDA program

(locate deliver) in the cyrus transport entry in master.cf:

/usr/lib/cyrus-imapd/deliver

Generally MAAs require knowledge of when new mail arrives or is deleted. It is possible

to poll for this information but modern systems provide a file alteration monitor (FAM).

Programs such as MAAs can register with the FAM and get notifications of changes

without any polling. (Not all systems provide FAMs and those that do may provide it as

a kernel API, a DLL, or a daemon.)

To allow your MAA to authenticate users SASL must be configured. SASL provides a

number of different mechanisms for authentication. For some of them you must make

sure the saslauthd is started and configured to run at boot time. You need to

configure your MAA to use the chosen authentication method. (The Cyrus defaults are

fine for localhost users; examine imapd.conf.)

Unlike the normal MDA, Cyrus (and some other MAAs) won’t automatically create

mailboxes when the first message arrives. Instead you manually create the mailboxes (as

user root or cyrus; set a password) when creating a new email user account:

/etc/init.d/cyrus-imapd start

/usr/lib/cyrus-imapd/cyradm localhost

IMAP Password: *****

localhost.localdomain> cm user.wpollock

localhost.localdomain> cm user.root

localhost.localdomain> exit

Note: Cyrus-imap comes with a certificate for localhost.localdomain. So you

should get a domain name mismatch warning message with your MUA when you use

imaps or pop3s. To fix this requires generating a new X.509 certificate. You can do

this yourself but the certificate will still give a warning about being untrusted. You can

get a free valid certificate from LetsEncrypt.org or StartSSL.com (or cacert.org, but you

will need to install their public key in your MUA to avoid the warning).

Possible problems:

cd /var/lib/imap

rm mailboxes.db

chmod -R g+r .

find . -type d |xargs chmod g+x

chown cyrus.mail /var/spool/imap/stage./

vi /etc/hosts.{allow,deny} # check maillog

Test MAA POP and IMAP:

After reloading the MTA and MAA, use mail to send yourself some email. Examine

the maillog file to see if it worked, and check the mail folders, to make sure the mail

was delivered to the mail store correctly. (Use ls and cat, not an MUA.)

https://letsencrypt.org/
https://www.startssl.com/
https://www.cacert.org/

To test pop3: telnet localhost pop3: (you can use “nc” instead of telnet, and

110 instead of pop3.) Enter the following to test:

 user accoutname

 pass password

 retr 1
 quit

To test imap: telnet localhost imap: (or use nc, and 143 instead of imap.)

Then enter the following (including the line numbers) to test it:

a01 capability

a02 login accoutname password

a03 list "" "*"

a04 select INBOX

a05 fetch 1:1 ALL

a06 logout

Not very secure! You can test the SSL versions the same way, using s_client, if you

have set up imaps and/or pops:

 openssl s_client -connect localhost:imaps # or pop3s

To use a different set of users than the passwd/shadow files, one way is to create a

database of POP/IMAP users and their passwords in /etc/cram-md5.pwd. Set the

mode to 0400 (owner root). The syntax is:

comments and blank lines allowed

username<TAB>password

example:

joe foobar

(A challenge string is sent from server to client, who encrypts with MD5 password and

sends result back, server also encrypts and compares results.) Of course you will need to

configure the MAA and MTA to use these user names.

Mail filtering for spam, viruses

Although the mail filtering facilities of postfix are impressive, it is usually better to have

separate, dedicated spam and virus scanners. In this configuration, postfix accepts email

as normal, and then relays it to amavisd on port 10024 rather than adding it to the mail

queue.

Amavis is not a virus scanner by itself. Rather it is the glue between the mail server

and a command-line virus scanning tool. Amavis intercepts an e-mail message and rips it

apart, uncompressing, decoding, and storing any attachments in separate files. These are

then scanned by the external scanners such as SpamAssassin, SpamPal, and ClamAV.

(Amavis has a plug-in design.)

Amavis then relays the email back to postfix via port 10025 which then processes as

normal. (This is a second instance of postfix’s smtpd. If amavis sent the mail back to

the original smtpd on port 25, it would loop it back to Amavis!)

Amavis adds headers to the message that the MTA/MSA uses to deliver/bounce/drop the

email. (Note the email flows through qmgr twice, and two different smptd daemons!)

An interesting perspective is that Postfix is split into an MSA which sends email to

Amavis (for virus and spam scanning), which then sends the email to a second Postfix

process, this time acting only as an MTA.

To avoid the hassles of piping email to such MTAs and passing envelope addresses on

the command-line, a new protocol LMTP (local mail transport protocol) is used

between such MTAs. LMTP is based on ESMTP. Postfix and Amavis communicate

using either TCP/IP or Unix Sockets.

Each email messaged is fully expanded out for processing, resulting in an expansion

factor of around 2 (depending on the amount of compression). This is offset by the

decoding reduction factor or approximately 7/8. The formula to estimate required

space is:

 max_email_size *(1+expansion_factor)*max_concurrent_amavis_instances * 7/8

If your max email size is 10MB (say) and you allow 5 amavis instances concurrently, you

need approximately 10MB * 5 * (1+2) * 7/8 = 132MB of temporary disk space. A

significant performance increase is possible if you use tmpfs (a RAM disk)

mounted at $TEMPBASE (/var/amavis).

Webmail

Setting up web mail is discussed below (after Apache Setup).

Fetchmail

fetchmail grabs the remote mail using POP3 (port110) from any number of sites, and

then hands off the mail to sendmail for local delivery. Add this line:

 localhost RELAY

to your /etc/mail/access file. The reason this might prove necessary is that

sometimes sendmail may even reject relay from the localhost if it’s not explicitly

authorized.

Mailing lists

The aliases file can also be used to create and maintain simple mailing lists. For more

complex mailing lists use majordomo, SmartList, or mailman instead (avoid the

older list-serv and list-proc software).

There are three email addresses associated with any mailing list: listname, owner-

listname, and listname-request. The first is where you sent mail so all list member

receive it, the second is usually used to report errors with the list, and the last is for

requests such as “add/drop me to the list”. With sendmail version >= 8, if a mail alias

contains a corresponding alias with an “owner-” prefix, bounces and errors for that list

will automatically be sent to the owner- address. Other mailing list software may use

additional email addresses; for example Mailman uses “listname-bounces” and several

other email addresses.

A list owner is the person responsible for the list policies. The owner can change settings

such as content filtering options, privacy options, archiving settings, etc. The owner can

also add, invite, or remove subscribers to their list.

A list moderator is the person who can approve or deny postings to the list and/or

manage a list of approved posters. (Normally all subscribers can post, but some can be

given read-only access, and some non-subscribers can be given permission to post.) Not

all lists have a human moderator. The owner can simply set up some content filters and

allow all subscribers (or anyone at all) to post. The owner is often the moderator as well

(and in any case can do whatever the moderator can). A busy list can also have a

separate (or even multiple) moderators, who use a moderator password to access some of

the admin pages that the owner can access.

Mailman is Gnu software to manage email discussion lists. Mailman gives each mailing

list a web page and allows users to subscribe, unsubscribe, etc. over the web. Even the

list manager can administer his or her list entirely from the web. Mailman also integrates

most things people want to do with mailing lists, including archiving, mail-to-news

gateways, integrated bounce handling, spam prevention, email-based admin commands,

direct SMTP delivery (with fast bulk mailing), support for virtual domains, and more.

Mailman’s website (including the install and setup documentation) is at

www.list.org.

To install and use Mailman you will need Python, a working web server, and a working

MTA. To get everything running once you’ve installed the Mailman software, you need

to hook Mailman up to both your web server and your mail system. If you plan on

running your mail and web servers on different machines (sharing Mailman installations

via NFS) be sure that the clocks on those two machines are synchronized closely. The

RPM package for mailman takes care of the Apache setup for you, as well as mailman’s

log file rotation. Most files are installed in /usr/lib/mailman, with lots of HTML

documentation in /usr/share/doc/mailman*/admin/doc/.

Mailman sets up a web page for each list for list members (subscribers) to use to

subscribe, manage their options, browse the list archives, or unsubscribe. As usual users

can also use special email messages to do this.

Warning! Most mailing list software uses the envelope from address to

determine the user’s identity, not the contents of any header or the body.

Whenever you subscribe to some list be sure to save the complete email

someplace. If your email address changes, you may need to “fake” the envelope

from address to unsubscribe! Using a web interface (which allows you to enter

your email address and a password) will be easier.

In addition to a page for list users Mailman sets up pages for the owner (or

administrator), the moderator(s), and users. The URLs for the web pages for mylist

would be:

http://hostname/mailman/admin/mylist/ the admin page

http://hostname/mailman/admindb/mylist/ the moderator page

http://hostname/mailman/listinfo/mylist/ the user’s page

http://hostname/pipermail/mylist/ the list’s public archives

http://hostname/mailman/private/mylist/ the list’s private archives

(A little work with Apache and URL rewrites, and you can use URLs such as

“http://mylist.domainname/” (listinfo page), “.../admin”, “.../archive”, and so on.)

Once installed, you must set a site (admin) password with

/usr/lib/mailman/bin/mmsitepass secret. Next run .../update. If

your site hosts many lists by different owners, create a site-wide list “mailman” so you

can contact them easily (may be done automatically). Do this using the web interface.

Finally start the mailman daemon and make sure it is set to run at boot time. (This won’t

start until you’ve created the “mailman” list!)

The web interface doesn’t appear to have a way to delete a list. Use

.../bin/rmlist [--archives] nameOfList and possibly edit the mail

aliases file.

Mail Server Maintenance

Mail servers use several files to control operation. You can edit these files (then

restart/reload the service). MTAs don’t read the plain-text files you edit, you must

convert them to a more efficient form known as a map first. (This is really just an ISAM

file.) How this is done depends on the file you’ve updated. (Fail-safe: make sure all files

are updated at boot time, from rc.local if necessary.)

Use cpio/tar/pax via cron to backup mail store nightly, after MTA and MAA are

shutdown:

#!/bin/sh

cd /

find ./var/spool/imap ./var/lib/imap ./etc -depth \

 | cpio -oaBv >/dev/st0 2>/var/log/cpio.log

The log file that is created basically just lists the files were backed up, which is not real

convenient for notifying the SA of the status of the backup.

Mail Control

Have an Acceptable Use Policy (AUP) available from your public web server (and

anonymous FTP server). Samples: www.us.uu.net/support/usepolicy/,

www.sprint.net/acceptableuse.htm.

Run identd. This daemon listens at port 113 for ID requests from remote sites. (So

open the firewall hole for this port.) identd will tell remote sites the username of the

user(s) currently connected to a given Src-IP/Dest-IP,Src-port/Dest-port connection.

Verify the correct entry for this is in /etc/services (grep ^auth), and enabled in

xinetd or init.d.

Configure MTA to control relaying. You should pick the most restrictive option that

will work for your situation.

Lecture 16 — Apache Web Server Setup and Web Mail Configuration

A web server accepts requests from clients (known as web browsers) for specific

documents, often called web pages. Usually these are text documents with HTML

(HyperText Markup Language) formatting, but may be any type of document. In

addition, a web server can generate documents dynamically, as the result of running

separate (external) programs, or performing database lookups.

The requests include a URL (Uniform Resource Locator), which uniquely identifies a

document on the Internet. A URL is actually a type of URI (Uniform Resource

Identifier), which in turn is a type of IRI (International Resource Identifier; mention

punycode). A URL has several parts, including a protocol (such as http://,

https://, ftp://, etc.), a web server (either an IP address or a DNS name such as

www.example.com, mail.example.com, etc.), an optional port number (by

default “:80” for HTTP, “:443” for HTTPS), a pathname, and optional other data. A

typical example might be

http://wpollock.example.com/somedocument.html.

A URL can also point to a directory rather than a document. In this case, it is up to the

web server to determine what document to return to the client. Some possibilities include

a (nicely formatted) directory listing, an error message, or some default document. For

Apache a default document is named “index.html” (or some variation such as

“index.htm” or “index.php”).

A default web page for the top directory of the web server is called the server’s

homepage. This is the page you get with a URL similar to

“http://servername/”.) By default Apache ships with a default “test”

 homepage. You will probably need to change that!

The requests and responses are sent via TCP using HTTP (HyperText Transmission

Protocol). A request packet may include form data in addition to required headers that

the user entered on some web page that allows user input (a form that includes a submit

button). The response from the web server will include some headers and the document’s

contents. The most important header in the response is the Status header, which is a 3

digit number. A value of 200 means no problems, 403 means permission denied

(usually because you set the wrong permissions), 404 means document not found,

and so on.

To troubleshoot HTTP and web server configuration problems, use the Firefox

extensions called “Live HTTP Headers” and “Modify Headers”.

Apache is the world’s most popular web server by a wide margin. (NginX is closing in,

however.) Windows and other versions are available, but these may be limited in what

features are provided (due to limitations of the operating system). The Apache

foundation (apache.org) hosts many projects besides a web server (httpd.apache.org), but

when we say “Apache”, we generally mean the httpd web server.

http://apache.org/
http://httpd.apache.org/

There are two major versions of apache. Version 1 has a reputation for rock-solid

performance and is still used for that reason. Version 2 is better only it hasn’t been used

for as long. Version 2 is highly modular. This allows you to easily add or remove

functionality as needed for your system. Even the configuration file is now modular.

Apache Configuration

To set up the Apache web server is easy, the default configuration just works. Most of

the configuration is listed in the file /etc/httpd/conf/httpd.conf. However

that file has an “Include conf.d/*.conf” to include the snippets in those files, as

if they were part of the main file.

The configuration consists of directives. These can be applied to the whole web server

(such as the User and Group to run httpd as), specific directories, filenames, or

URLs. Each block of directives is contained in HTML-like tags, such as <Directory

foo> ... </Directory>, <File *.txt> ... </File>, or <Location bar> ...

</Location> (for URLs). The tags are generally not case-sensitive.

Specific directives are made available by loading some Apache module. For example, to

use any of the SSL directives to enable and configure HTTPS, you must load

ssl_module first. You can easily tune Apache by not loading modules you don’t need.

The documentation for Apache is well organized. You can lookup directives

alphabetically, by type, or by module. There are plenty of examples, and the

config file(s) include many comments to explain.

To start with, go through httpd.conf and examine the global directive defaults. Some

of the ones I generally consider changing are:

ServerTokens Prod

MaxSpare{Servers,Threads}

ExtendedStatus On

ServerAdmin webmaster@localhost set email alias for this

ServerName

DocumentRoot

DirectoryIndex add index.htm, index.php, ...
HostnameLookups Off

ServerSignature EMail

You can run a command to check the syntax of your configuration; on current versions,

that is “httpd -t”. If Apache fails to start, disable files in conf.d one at a time until

it starts. (I often have a problem when a DB is not configured correctly, for say

SquirrelMail, RT3, Wiki, etc.) Often the error messages in httpd’s log, or the output of

journalctl can provide a clue what caused the failure.

Apache include special directives for security. For any file, directory, or location, you

can limit access in many ways: limit HTTP methods, limit source IP addresses, even

password protection. These (and some other) directives can also be placed in special per-

directory files (default name is “.htaccess”). This allows webauthors to tweak access

without providing them access to httpd.conf, however using this feature greatly

slows Apache down.

Finally, Apache can be configured to serve up multiple websites. This can be done by

name (only requires a single IP address, with many DNS names) or by IP address. Using

SSL (HTTPS) requires using one IP address per virtual website.

Webmail Configuration: Apache Configuration

Step one: turn on Apache. Do a “ps -ef | grep [h]ttpd”. Qu: why so many

processes? Ans: it takes time to start a process so a master httpd process starts of a bunch

of spares. When a HTTP request is received, the master process hands it off to one of the

spares.

Now view the server’s homepage. If this works, your server is working fine! If not, you

need to examine the /var/log/httpd/error.log file to see the error messages.

Best advice is to configure apache for SSL so users can authenticate and send/read email

securely. However, this requires a certificate, so we won’t do this now. Note this also

requires firewall holes for ports 80 (and 443 when HTTPS is used).

You will need to enable PHP if not on by default. (Run through httpd.conf, show

conf.d/*, and discuss admin using GUI.)

You can setup Apache for Squirrelmail webmail with
 Alias /webmail /usr/share/squirrelmail

An alternative is to configure a virtual host with a name such as webmail.gcaw.org.

In Apache, a given server can server multiple websites, each is a virtual host. There are

two techniques for this:

 IP-based virtual hosts require one IP address per website. This can be done using IP

alias (multiple IP addresses per NIC) or (rarely) multiple NICs. This method works

well with SSL, (HTTPS, since the host name is included in a security certificate, and

that name must map to the IP address used.

 Name-based virtual hosts relies on HTTP 1.1 request headers, which identify the

server name the client is trying to reach. This method scales up well. Note that even

with name-based virtual hosting, the first step is to match the virtual host with an IP

address.

If you have multiple virtual hosts using the same IP (commonly, using “*” for the IP

address), the ServerName (or ServerAlias) directive within each

VirtualHost block is used. (Note, if you forget to include such a directive, the

global one is inherited!) Use ServerAlias when a given website has multiple

names.

Any HTTP request that doesn’t match any virtual host define, will use the global

configuration. (See httpd.apache.org/docs/2.4/vhosts/ for details.)

https://httpd.apache.org/docs/2.4/vhosts/

A CNAME DNS record can be added for http://webmail.gcaw.org/. (In real

life, you’ll want to use https instead.) Or use URL re-writing. Reload DNS and check

the logs for errors.

Since this web server is only for webmail, you can avoid any virtual domains. Simply set

the directives below in the global section of httpd.conf.

You then configure apache to serve this virtual domain. The first way uses HTTP and the

second uses HTTPS (only use one, if either is used):

<VirtualHost *:80>

 ServerAdmin webmaster@gcaw.org

 ServerName wpserver.gcaw.org

 DocumentRoot /usr/share/squirrelmail

</VirtualHost>

<VirtualHost webmail.gcaw.org:443>

 ServerAdmin webmaster@gcaw.org

 ServerName webmail.gcaw.org

 DocumentRoot /usr/share/squirrelmail

</VirtualHost>

Squirrelmail

This is a set of PHP scripts that are run by Apache when a user visits the

http://hostname/webmail/ URL. Thus the Apache user must access the

squirrelmail directories: the config directory, the mailstore (but since Dovecot can’t

access maildirs, configure squirrelmail to use IMAP), and the attachments directory.

Note that uploaded but unsent attachments stay forever, so a cron job is used to clean

the attachment directory (via tmpwatch(8)).

Using HTTPS requires some changes to the apache setup made by the RPM, to force (or

at least allow) SSL access to /webmail.

Squirrelmail presents HTML 4.0 forms you fill out and submit to log in, which send your

username and password in plain text. These are passed to your IMAP or IMAPS server.

IMAP should be safe since both the Squirrelmail/HTTP[S] MUA and the IMAP server

run on the same host, so sensitive data doesn’t traverse any network.

Each page loaded in your browser makes a new IMAP/IMAPS connection, which could

be a performance problem. It is possible to cache IMAP sessions to reuse them (requires

cookies to store the authentication data.) See www.imapproxy.org/ for details.

You should pick the two directories to be outside of your website but with appropriate

ownership and permission so Apache processes can access them. You also need to make

sure the web server can access the IMAP/IMAPS server. This is no problem if both are

on the same server (but may require firewall/TCP Wrappers holes if different servers.)

Webmail Configuration Steps:

 cd to /usr/share/squirrelmail, and from there run the config/conf.pl

program. (Turn off color (hit ‘C’) if text doesn’t show up!)

Run through the configuration menus, especially remember to use the “D” choice to setup

defaults for your IMAP server (“D” for Dovecot). You can configure web-based

administration and add additional feature modules as well. Go to the

SquirrelMail.org website for documentation on these.

Next, check the Apache configuration for Squirrelmail; it should be in the file

/etc/httpd/conf.d/squirrelmail.conf. The default in that file may need to

be changed. For example, on the version I used, the configuration uses “/webmail/”

as the alias for Squirrelmail. This is fine. But the next part automatically redirects the

user from HTTP:// to HTTPS://. Since that isn’t setup (for now), you need to

comment out that part. After making any changes, check the result using “httpd -S”.

If okay, reload/restart Apache to use the newly added/modified configuration. Save a

diff listing of your changes in your system journal as well.

SquirrelMail is a webmail package written in PHP.

Alias /webmail /usr/share/squirrelmail

<Directory

"/usr/share/squirrelmail/plugins/squirrelspell/modules">

 Deny from all

</Directory>

this section makes squirrelmail use https connections

only, for

this you

need to have mod_ssl installed. If you want to use

unsecure http

connections, just remove this section:

#<Directory /usr/share/squirrelmail>

RewriteEngine on

RewriteCond %{HTTPS} !=on

RewriteRule (.*) https://%{HTTP_HOST}%{REQUEST_URI}

#</Directory>

(Instead of commenting out that section, you can consider surrounding that part with:

<IfModule ...>

 ...

</IfModule>

Then if you later enable SSL, you won’t need to remember to update this configuration.)

Test the setup by restarting/reloading apache (httpd) and point your web browser to

http://hostname/webmail/src/configtest.php. If that works, try

http://hostname/webmail/. (Or http://webmail.domain/ if you configured that.)

(If it doesn’t work, edit /etc/httpd/conf.d/squirrelmail.conf.)

One alternative to Squirrelmail (there are several) is sqwebmail, the webmail component

of Courrier mail. It bypasses IMAP by reading maildirs directly. Of course, this means

that the web server and IMAP server are on the same host. Sqwebmail uses a root setuid

program to access the maildirs directly (in the user’s home directories). See

www.courier-mta.org/sqwebmail/.

Nginx

While fast, Apache is designed for flexibility. On the other hand, Nginx is designed for

speed. It does handle most standard web server tasks, including webmail.

Some sites use Nginx as a proxy (or front-end) for Apache. Using a cluster of Nginx

webservers, outfitted with Memcached distributed memory cache, allows very short

response times and many concurrent sessions. More complex queries (say for dynamic

content) are forwarded to the Apache server(s).

On Fedora installing Nginx is simple: yum install nginx. Then start it. The default

configuration serves content from /usr/share/nginx/html. You can edit the

configuration file in /etc/nginx/nginx.conf. The syntax is:

 section-name {

 directive;

 ...

 }

 ...

http://www.courier-mta.org/sqwebmail/

