
32 March 2005 QUEUE rants: feedback@acmqueue.com

Organizations of all sizes are
spending considerable efforts on

getting patch management right—
their businesses depend on it.

Software patch management has grown to be a business-
critical issue—from both a risk and a financial manage-
ment perspective. According to a recent Aberdeen Group
study, corporations spent more than $2 billion in 2002
on patch management for operating systems.1 Gartner
research further notes the cost of operating a well-man-
aged PC was approximately $2,000 less annually than
that of an unmanaged PC.2 You might think that with
critical mass and more sophisticated tools, the manage-
ment cost per endpoint in large organizations would be
lower, though in reality this may not be the case. The
objective of this article is to provide some rationale—
drawn from enterprise experience—to put these obser-
vations into context and present some approaches that
could be useful to combat that trend.

There are a few main themes worth noting. The first
and probably most important is that patch management
is a team effort. In a large enterprise, many departments
need to work together to correctly assess and remediate
software vulnerabilities through patching. Good tooling
can help, but enterprises can’t succeed without establish-
ing a well-defined process and good communications
among the various teams involved.

Patching the

Enterprise

GEORGE BRANDMAN, MORGAN STANLEY

Patch and DeployFO
CU

S

 QUEUE March 2005 33 more queue: www.acmqueue.com

34 March 2005 QUEUE rants: feedback@acmqueue.com

A second important theme is that no single tool will
solve all problems. For a company with tens of thousands
of endpoints (e.g., desktops, laptops, servers), comple-
mentary systems are needed to effectively manage the
patching process. Depending on the complexity of the
internal network, vendor-developed tools may not fit
neatly or completely address all needs, requiring some
amount of custom development.

Patch management is reactive, good security practices are
proactive. It may seem obvious, but it’s easy to get caught
up applying waves of patches without taking time out
to engineer the tools and configurations that can reduce
or eliminate certain vulnerabilities before they become
exploited.

WHERE WE ARE TODAY
Most enterprise-quality patch management systems
follow some of the same basic processes. In a nutshell,
patches and the policies used for determining their appli-
cability are first downloaded from a vendor’s secure Web
site to the internal corporate network. Next, comput-
ers are targeted to receive the package that contains the
patch and corresponding policies at a scheduled time, or
coincident with a system event such as user logon. The
policies then determine whether the patch is applicable
for the computer, and install it if appropriate. Finally,
the computer will often need to be rebooted to complete
the patch installation before it reports back to a central
repository that the patch has been successfully installed.
A simplified, typical architecture is shown in figure1.

Some of the main advantages of an enterprise-cali-
ber system include sophisticated targeting, scheduling,
reporting, and inventory capabilities. All of these are
essential when working with a very large number of com-
puters and thousands of installed applications.

Targeting typically involves selecting a specific set of
computers to receive a package using some meaningful
grouping within the organization. This could be a couple
of floors occupied by a friendly department at first, scal-
ing up to entire business units or campuses. Good patch
management tools provide flexible mechanisms for

targeting. This can range from LDAP queries into Active
Directory for organizational units or mail groups, to
looking at specific inventory records about a computer’s
hardware or software from connections to built-in or
external databases.

Once a patch is delivered to a targeted computer, vari-
ous automated mechanisms can be used to determine its
applicability. The most common include looking for some
predetermined footprint composed of files, DLL versions,
and/or registry settings. As an example, Microsoft pro-
vides this capability with its Windows Update and MBSA
(Microsoft Baseline Security Analyzer) utilities. There are
situations, however, that are not covered by these tools.
In addition, these utilities apply only to certain Microsoft
software products and not to other vendors’ products,
such as Adobe Acrobat or Mozilla Firefox. In the “Getting
it Right” section later in this article, we discuss some of
these considerations in greater detail.

Scheduling identifies the necessary timing and system
conditions for applying updates. In the most basic form,
jobs would be given a calendar date and time to run.
While this might meet the needs of a smaller organiza-
tion, it wouldn’t cut it for a global financial services firm
with many business units, each with unique and time-

Patching the

Enterprise

Patch and DeployFO
CU

S

Patch Management Architecture

patches

secure download

target &
schedule

reporting

applicability installation

P1 P2 P3 P4

patch repository

patch management infrastructure

P1 P2 P3 P4

P4

vendor web site

corporate network

P4 P4 P4 P4

FIG 1

 QUEUE March 2005 35 more queue: www.acmqueue.com

sensitive demands. For that type of organization, addi-
tional capabilities, including the following, are required:
• Support for optional and mandatory windows to apply

patches.
• Detection of the current user and system state (e.g., is

the user idle?).
• Ability to determine if and when to reboot.
• Flexibility for the user to defer or refuse the update

under certain circumstances.
Good patch management systems should also support

a concept of tiered scheduling, where unique deployment
cycles can be created for different categories of patches.
For example, patches placed in a critical bucket could be
applied on a weekly (or more frequent) basis, while others
would be applied only monthly.

Timely and accurate reporting from managed comput-
ers back to a central repository is a critical part of the
patch management process. When working with a large
number of endpoints, the data collection process can
become onerous. A tiered, fan-in architecture can assist
in protecting the central repository from being swamped
by thousands of computers attempting to report status
simultaneously. This is also an area where agent-less
patch management systems (i.e., those with no local
service running on the managed computer) may end up
with a disproportionate amount of the work being done
on the central servers collecting and processing results.

Inventory of endpoints, both managed and unman-
aged, is the ongoing process of cataloging the computers
on the corporate network. It includes tracking important
hardware, application, and operating system characteris-
tics and is used for both targeting patches and maintain-
ing overall system health. The process can be resource
intensive, so there needs to be a balance: collecting
enough information to manage the environment appro-
priately, but not so much that the end-user experience is
negatively impacted or important data gets lost in the tall
grass. Some mechanism for collecting information about
unmanaged endpoints should also be available to enable
actions that mitigate their risk to the corporate network.

KEY CHALLENGES
Enterprise patch management costs and efforts may
increase disproportionately with the scale and complexity
of the target environment. Less-sophisticated tools and
processes suitable for smaller organizations may not be
appropriate for larger and more heterogeneous environ-
ments. Several factors discussed in this section may also
have significant bearing on the overall effort required to
maintain a healthy and secure environment.

REBOOT DISRUPTION
One of the biggest roadblocks to timely patching contin-
ues to be required reboots. This occurs in multiple vendor
products, including Windows operating system patches,
Internet Explorer, and other products and device drivers
that operate in the kernel space. Some patch management
systems provide the capability to install a patch, while
deferring the reboot until a later time. While less intrusive
to the end user, this practice can leave the system in an
inconsistent state.

RATE OF ISSUE OF PATCHES
The need to reboot between updates can make patching
schedules for a large organization resemble a block of
Swiss cheese. Each business unit may have different con-
siderations about when and where their users’ machines
may be rebooted. Some may restrict midweek reboots,
others may have critical weekly or monthly processing
that must be considered. Servers bring their own unique
issues, as many line-of-business applications are 24/7,
with no opportunity for a maintenance window.

PATCH MANAGEMENT SYSTEMS—
ONE SIZE DOES NOT FIT ALL
Some of today’s enterprise patch management systems
may provide either incomplete or inconsistent policy def-
inition capabilities for complex scenarios. Large organiza-
tions must be sensitive to date and time requirements,
patch criticality, network connectivity, and machine state.

MOBILE USERS COMPLICATE THE PROBLEM
An increasingly mobile user base and complex corporate
network composed of DMZs (demilitarized zones), remote
laptops, and locked-down end-user and server environ-
ments all present unique challenges for keeping systems
patched. Patch packages and delivery systems must be
engineered for persistence and flexibility with regard to
connectivity and various security configurations.

GETTING IT RIGHT
In a large-scale financial services environment, taking too
long to roll out a critical update can leave the enterprise
vulnerable to an attack. That being said, deploying with
insufficient testing could lead to, for example, the break-
down of line-of-business applications on the trading floor
during market hours.

Getting it right is the balance of applying patches in
an extremely timely way, while minimizing user impact
from reboot disruptions and a continuous stream of
updates. A well-coordinated team effort with representa-

36 March 2005 QUEUE rants: feedback@acmqueue.com

tion from a number of different disciplines is required to
execute effectively:
• Operations teams may be the ones to package, centrally

test, and deploy the update.
• Engineers integrate it into the build and patch manage-

ment systems.
• Line-of-business support teams ensure that business-

critical applications are not impacted.
• Security teams assess the criticality, set the over-

all deployment schedule, and potentially prescribe
defensive actions (e.g., shutting ports on the corporate
firewalls).

All of this takes time. Some patches may need to
be repackaged to install and configure correctly in the
corporate network. One or more test deployments may
be scheduled prior to a full global enterprise rollout to
incrementally prove both the compatibility of a patch
and the soundness of the package for installing it. After
each iteration, the result is evaluated for any signs of
larger problems that may loom with an expanded deploy-
ment. This can include unforeseen end-user impacts or
hidden interdependencies with other products. Packages
may then need to be revised to detect previous versions of
incompatible software and either uninstall them or install
different components applicable to the version detected.

MANAGING REBOOT CONSIDERATIONS
With some vendors releasing patches monthly, one way
to minimize user impact is to create a package containing
multiple required hot fixes. One or more of these patches
might require a reboot. A tool for chaining hot fixes
together can be used to minimize this disruption and the
need for multiple reboots when installing several patches
to a single, final reboot, though there may still be updates
that require reboots between patches.

In a deferred reboot scenario, some files are overwrit-
ten to their new versions while others (such as system
DLLs) are staged and waiting for the next reboot to be
activated. Organizations need to weigh the risk of this
“patch and reboot later” strategy vs. the impact of a
system reboot to the end user. Using the former to more

quickly deploy patched versions of binaries and librar-
ies may present the perception that the endpoint risk
has been mitigated, when in fact it may not have been if
some components are waiting for a system reboot to be
activated.

PULLING THE TRIGGER
At some point—after the centralized and end-user testing,
pilot deployments, and validation of results have been
completed—it’s time to do a global rollout. Typically,
unless there is an immediate threat, as was the case with
the SQL Slammer virus, the rollout can be initiated over
the course of a weekend to minimize user impact.

A policy defining the specifics for applying the patch
(or package of patches) is usually implemented consider-
ing the following:
• Business hours at the endpoint.
• Whether users will be allowed to defer the installation

or reboot and, if so, for how long.
• Appropriate user or machine states at the time the patch

is applied.
Stitching together a schedule of acceptable patching

windows across many time zones is often difficult. Patch
criticality should also be considered when determining
whether users will be allowed to defer the update.

A sample flow, including some of the decision points
that might be included in a laptop patching policy, is
shown in figure 2.

The process of collating results begins shortly after
the initial mass enterprise rollout has completed. Tens
of thousands of endpoints will report back to the central
repository via a post-patch verification process. This typi-
cally includes similar checks for file versions or registry
keys as were performed to determine applicability before
the patch was installed.

Automated cleanup cycles can then be scheduled to
address the remaining machines that were not success-
fully patched initially. Machines with health problems or
those that were off-network when the deployment was
originally scheduled can contribute to lowering initial
success rates. Problems such as an inoperable patch
management agent on the endpoint can be particularly
troublesome, as they might require a desk visit to remedi-
ate the issues causing installations to fail.

Maintaining a well-defined, common base build and
minimizing drift between end-user configurations can
help reduce the overall number of machines with health
problems and demonstrates good, proactive security
practice. The removal of local administrator capabilities
from as many end users as possible (often more difficult

Patching the

Enterprise

Patch and DeployFO
CU

S

 QUEUE March 2005 37 more queue: www.acmqueue.com

to achieve with developers’ machines) and the implemen-
tation of policies to consistently decommission older and
more problematic product versions can also help enter-
prises progress toward these goals.

ADDRESSING THE NEEDS OF REMOTE AND MOBILE USERS
Patch criticality may be considered relative to the end-
user environment, where both remotely connected and
mobile user needs must be addressed. Certain patches
may be deemed mandatory for LAN-connected users, but
optional for remote or mobile users. An endpoint may be
based on the standard corporate base build and configu-
ration or an out-of-the-box vendor operating system
installation. In either case, VPN-connected endpoints
may have certain protocols restricted, such as SMB (server
message block). Distribution tools should also support the
protocols common to basic Internet connectivity, includ-
ing HTTP/S and FTP.

PUSH VERSUS PULL
Many current software distribution products are capable
of both push-based software distribution and pull-based
polling for software patch updates. Both of these meth-

odologies have a place in an enterprise-grade software
distribution system.

Push-based deployments are positioned to ensure
that a specific patch gets deployed to a large number of
machines at the same time. This is well suited for emer-
gency patches and meeting certain deployment window
restrictions. The downside to push methodology is that
target machines must be reachable on the network or
have elaborate retry logic to compensate.

Pull-based deployments do not typically require an
endpoint to be reachable via the corporate network to
receive a patch. Simple polling algorithms, LAN-port link
status, and system reboot can all cause a pull event to
take place. This enables machines that become avail-
able on the network to immediately poll the distribution
servers to see what they may need to become current. An
additional benefit of pull-based technology is that it can
be used as a mechanism for endpoints to initially register
themselves as clients of the patch management system. A
downside to pull methodology is that all machines must
reach their polling interval before it can be assured that a
patch has been deployed.

The most robust software distribution systems have
both concepts coupled
together with fine-grained
endpoint targeting control.
Deployment packages are
made available to all sys-
tems matching some well-
defined inventory criteria
or group association. A
“push” is then initiated to
all matching clients with
each client asked to “pull
now.” Targeted machines
not on the network will
pull whatever is needed at
their next polling inter-
val, using the appropriate
connectivity option at the
time.

PRIORITIZING TOOL
CAPABILITIES ACROSS
ORGANIZATIONS
Maintaining a reasonable
state of health and security
for a diverse comput-
ing environment can be
a challenging task for a

Patch Update Policy Flow

Something to do?
(Check central db or
local policy cache)

A

A

A

A

Has update
been offered

before?

Is update applicable?
(OS, business rules,

date/time,
location, etc.)

Is update
mandatory?

Is update
offer accepted

by user?

Set context, install
and report

No

No

No

No

Yes

Yes

Yes

Yes
Yes

No FI
G

 2

38 March 2005 QUEUE rants: feedback@acmqueue.com

patch management system. It may be difficult for a single
tool to meet the challenges of every organization cost
effectively. Influencing factors may include the types and
numbers of targeted endpoints and capabilities of existing
internally developed infrastructure. Some tools may have
excellent reporting and targeting capabilities. Others may
excel in secure transmission of updates across the Internet
or integration with corporate software repositories.

Each enterprise may prioritize certain capabilities
of a product depending on its size and connectivity
needs. Large organizations may have internally devel-
oped infrastructure for content replication and software
deployment, placing more emphasis on well-documented
vendor APIs and integration capabilities. Smaller orga-
nizations may derive more value from a completely
turnkey solution. Agent-less products focusing on ease
of installation and deployment with minimal server
requirements may be a good fit for these enterprises.
Global organizations often create geographic hierarchies
for centrally managing infrastructure with one or more
“root” hierarchies and regional or campuswide sub-hier-
archies. Current product architectures that support fan
in/out capabilities between the content and policy source
and the target endpoints may be well suited for this type
of management. Support for inheritance and override of
policy, including targeting at all levels of the hierarchy, is
also extremely valuable. Ultimately, several best-in-cate-
gory products may need to be considered by an enterprise
to best meet the diverse set of capabilities required.

STAYING PATCHED
Sometimes a new version of a vendor product may down-
grade a common component to a level below the latest
patched version. An enterprise may be able to address this
through a centralized software packaging team or stan-
dardized tools that compare the package with a current
version of the base build configuration for the targeted
end-user environment.

Ongoing inventory and reporting can also be effective
to ensure that endpoints stay patched. Mechanisms exist
at the vendor product, operating system, and hardware

levels to perform comprehensive inventorying. WMI
(Windows Management Instrumentation) exposes inven-
tory and management information stored by OEMs using
the DMTF CIM (Distributed Management Task Force
Common Information Model) specification. An enterprise
may use these APIs, as well as direct querying of hardware
where appropriate, to gather required system inventory
information. Checking machine registry and file system
information to verify patch signatures and updating this
information in a central repository should be an ongoing
process, in addition to one that takes place immediately
following the initial patch deployment.

With some of the more recent fast-spreading viruses,
it can be a challenge to prevent a newly built machine
from becoming infected before the automated build
process can apply current patches. One way this can
potentially be mitigated is to slipstream, or inject directly
into the build process, the updated components so they
are installed as a part of the automated base build, rather
than being applied on top. Unfortunately, this process
can significantly add to the cost of maintaining the base
build and is not necessarily appropriate for all types of
patches.

Virtual machine technology typically provides check-
point capabilities that can be very useful for testers and
developers. The user can take a snapshot of the system
state and then quickly roll the virtual machine back to
this state on command. A problematic side effect is that
if not properly managed, users can actually unpatch a
machine on the corporate network through this action.
Engineering efforts may be required to ensure that this
capability can be enabled safely.

WHAT’S NEXT?
Large enterprises and the current breed of patch manage-
ment systems have become extremely sophisticated in
their approach to laying down patches on all types of
machines including laptops, desktops, and servers. As
discussed throughout the article, the costs of keeping
machines patched and healthy can also be minimized
through the use of automated build and configuration
management systems.

So, with this technology already in place, what more
can be done to achieve significant improvements with
respect to the cost, reliability, and speed of managing an
enterprise environment? One possible answer may lie in a
fundamental change in the way we think about manag-
ing endpoints. What if enterprises were effectively able
to run all of their business applications and large parts
of the machine’s operating system from a network file

Patching the

Enterprise

Patch and DeployFO
CU

S

 QUEUE March 2005 39 more queue: www.acmqueue.com

system? In this model, executable files and configuration
information would be sourced from read-only areas on
the network, then run locally in memory resident on the
endpoint.

Deploying updates to a few hundred file servers is
significantly less time-consuming and error-prone than
physically installing those same updates on tens of
thousands of machines. This would require new ways of
abstracting stateful installs, in addition to mechanisms
for managing different operating system and application
configurations in the network namespace. This may not
mitigate the need for reboots to activate a configuration
change in some cases, but the benefits are considerable.

Rather than patching every system by physically
installing a piece of software onto it, the patch would
need to be installed and tested only in the network
namespace, then the target machines would be pointed
to the new configuration. Testing updates on a handful of
end-user configurations in this environment would pro-
vide significantly greater confidence in the outcome, since
configuration drift on the targeted machines would be
at an absolute minimum. Managing the remaining local
configuration drift on endpoints could be accomplished
through policy-based capabilities that proactively restore
critical settings and files as they are changed or removed.
Global rollout and rollback, if necessary, could be accom-
plished in a fraction of the time that it takes today.

RUNTIME ENVIRONMENTS AND LOCAL CACHING
Java and Microsoft .NET development technologies are
engineered to address run-from-network considerations.
Older Microsoft technologies such as COM are possible,
but more difficult, to abstract to this model. From a
system level, Posix-style operating systems provide certain
capabilities to make both the application and operating
system run-from-network scenarios more viable.

While desktops or servers can generally count on
a reliable broadband connection for retrieving their
application software and operating system configuration,
laptops are often off-network and need to be functional
to their end users even while disconnected. For these
scenarios, some form of intelligent caching would need to
be available that provides local capabilities while discon-
nected, but automatically updates the cache when the
corporate network becomes available.

Laptops need the capability to be patched across vari-
ous types and qualities of network connectivity including
LAN, VPN, or simply an Internet connection. All of this
needs to integrate with the local cache management on
the machine and appear seamless to the end user.

OTHER MANAGEMENT POSSIBILITIES
The corporate network itself could play a role in patch
management. In addition to file servers, network nodes
such as routers or gateways could actively work with end-
points such as desktops or servers to detect and remediate
security or other types of issues. Additionally, some ven-
dors are beginning to offer management capabilities that
provide more granular, centralized security configuration
controls in certain areas.

For many corporate end users, high-performance
desktops aren’t explicitly required. For these users, provid-
ing thin-client access through terminal emulation to a
VM (virtual machine) or terminal server could dramati-
cally reduce the number of endpoints to be managed. The
back-end VM or terminal servers could still take advan-
tage of all the previously described capabilities offered
through a run-from-network model. An additional benefit
of this model is the higher-bandwidth connections typi-
cally available from these servers to the network file serv-
ers as compared with that of an end user’s desktop.

PULLING IT ALL TOGETHER
Technologies available today and those coming down the
road will continue to simplify patch and systems man-
agement. The ongoing integration of automated security
practices will ultimately blend seamlessly into these
tools. Vendors in networking and platform technologies
are already beginning to work together toward this goal.
New approaches may be in order to rethink the way large
corporate computing networks are configured and change
managed for the greatest efficiency of scale. Regardless
of the approach used, a practical balance of risk manage-
ment will remain a key ingredient requiring the thought-
ful coordination of disciplines across the organization. Q

REFERENCES
1. Schwartz, K. D. Patch management grows up. June 3,

2004. The Channel Insider; http://channelzone.ziffda-
vis.com.

2. Silver, M. and Pescatore, J. October 14, 2004. Security
holes increase Windows client TCO. Gartner Research
Note; http://www.gartner.com.

LOVE IT, HATE IT? LET US KNOW
feedback@acmqueue.com or www.acmqueue.com/forums

GEORGE BRANDMAN is an executive director in Morgan
Stanley’s Institutional Securities Information Technology
Department.
© 2005 ACM 1542-7730/05/0300 $5.00

